251 lines
8.1 KiB
Python
251 lines
8.1 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.utils.data import DataLoader
|
|
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE
|
|
from tests import _PATH_DATASETS
|
|
from tests.helpers.datasets import AverageDataset, MNIST, TrialMNIST
|
|
|
|
if _TORCHVISION_AVAILABLE:
|
|
from torchvision import models, transforms
|
|
from torchvision.datasets import CIFAR10
|
|
|
|
|
|
class Generator(nn.Module):
|
|
def __init__(self, latent_dim: int, img_shape: tuple):
|
|
super().__init__()
|
|
self.img_shape = img_shape
|
|
|
|
def block(in_feat, out_feat, normalize=True):
|
|
layers = [nn.Linear(in_feat, out_feat)]
|
|
if normalize:
|
|
layers.append(nn.BatchNorm1d(out_feat, 0.8))
|
|
layers.append(nn.LeakyReLU(0.2, inplace=True))
|
|
return layers
|
|
|
|
self.model = nn.Sequential(
|
|
*block(latent_dim, 128, normalize=False),
|
|
*block(128, 256),
|
|
*block(256, 512),
|
|
*block(512, 1024),
|
|
nn.Linear(1024, int(np.prod(img_shape))),
|
|
nn.Tanh(),
|
|
)
|
|
|
|
def forward(self, z):
|
|
img = self.model(z)
|
|
img = img.view(img.size(0), *self.img_shape)
|
|
return img
|
|
|
|
|
|
class Discriminator(nn.Module):
|
|
def __init__(self, img_shape: tuple):
|
|
super().__init__()
|
|
|
|
self.model = nn.Sequential(
|
|
nn.Linear(int(np.prod(img_shape)), 512),
|
|
nn.LeakyReLU(0.2, inplace=True),
|
|
nn.Linear(512, 256),
|
|
nn.LeakyReLU(0.2, inplace=True),
|
|
nn.Linear(256, 1),
|
|
nn.Sigmoid(),
|
|
)
|
|
|
|
def forward(self, img):
|
|
img_flat = img.view(img.size(0), -1)
|
|
validity = self.model(img_flat)
|
|
|
|
return validity
|
|
|
|
|
|
class BasicGAN(LightningModule):
|
|
"""Implements a basic GAN for the purpose of illustrating multiple optimizers."""
|
|
|
|
def __init__(
|
|
self, hidden_dim: int = 128, learning_rate: float = 0.001, b1: float = 0.5, b2: float = 0.999, **kwargs
|
|
):
|
|
super().__init__()
|
|
self.hidden_dim = hidden_dim
|
|
self.learning_rate = learning_rate
|
|
self.b1 = b1
|
|
self.b2 = b2
|
|
|
|
# networks
|
|
mnist_shape = (1, 28, 28)
|
|
self.generator = Generator(latent_dim=self.hidden_dim, img_shape=mnist_shape)
|
|
self.discriminator = Discriminator(img_shape=mnist_shape)
|
|
|
|
# cache for generated images
|
|
self.generated_imgs = None
|
|
self.last_imgs = None
|
|
|
|
self.example_input_array = torch.rand(2, self.hidden_dim)
|
|
|
|
def forward(self, z):
|
|
return self.generator(z)
|
|
|
|
def adversarial_loss(self, y_hat, y):
|
|
return F.binary_cross_entropy(y_hat, y)
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
imgs, _ = batch
|
|
self.last_imgs = imgs
|
|
|
|
# train generator
|
|
if optimizer_idx == 0:
|
|
# sample noise
|
|
z = torch.randn(imgs.shape[0], self.hidden_dim)
|
|
z = z.type_as(imgs)
|
|
|
|
# generate images
|
|
self.generated_imgs = self(z)
|
|
|
|
# ground truth result (ie: all fake)
|
|
# put on GPU because we created this tensor inside training_loop
|
|
valid = torch.ones(imgs.size(0), 1)
|
|
valid = valid.type_as(imgs)
|
|
|
|
# adversarial loss is binary cross-entropy
|
|
g_loss = self.adversarial_loss(self.discriminator(self.generated_imgs), valid)
|
|
self.log("g_loss", g_loss, prog_bar=True, logger=True)
|
|
return g_loss
|
|
|
|
# train discriminator
|
|
if optimizer_idx == 1:
|
|
# Measure discriminator's ability to classify real from generated samples
|
|
|
|
# how well can it label as real?
|
|
valid = torch.ones(imgs.size(0), 1)
|
|
valid = valid.type_as(imgs)
|
|
|
|
real_loss = self.adversarial_loss(self.discriminator(imgs), valid)
|
|
|
|
# how well can it label as fake?
|
|
fake = torch.zeros(imgs.size(0), 1)
|
|
fake = fake.type_as(fake)
|
|
|
|
fake_loss = self.adversarial_loss(self.discriminator(self.generated_imgs.detach()), fake)
|
|
|
|
# discriminator loss is the average of these
|
|
d_loss = (real_loss + fake_loss) / 2
|
|
self.log("d_loss", d_loss, prog_bar=True, logger=True)
|
|
return d_loss
|
|
|
|
def configure_optimizers(self):
|
|
lr = self.learning_rate
|
|
b1 = self.b1
|
|
b2 = self.b2
|
|
|
|
opt_g = torch.optim.Adam(self.generator.parameters(), lr=lr, betas=(b1, b2))
|
|
opt_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(b1, b2))
|
|
return [opt_g, opt_d], []
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(TrialMNIST(root=_PATH_DATASETS, train=True, download=True), batch_size=16)
|
|
|
|
|
|
class ParityModuleRNN(LightningModule):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.rnn = nn.LSTM(10, 20, batch_first=True)
|
|
self.linear_out = nn.Linear(in_features=20, out_features=5)
|
|
self.example_input_array = torch.rand(2, 3, 10)
|
|
|
|
def forward(self, x):
|
|
seq, last = self.rnn(x)
|
|
return self.linear_out(seq)
|
|
|
|
def training_step(self, batch, batch_nb):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.mse_loss(y_hat, y)
|
|
return {"loss": loss}
|
|
|
|
def configure_optimizers(self):
|
|
return torch.optim.Adam(self.parameters(), lr=0.02)
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(AverageDataset(), batch_size=30)
|
|
|
|
|
|
class ParityModuleMNIST(LightningModule):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.c_d1 = nn.Linear(in_features=28 * 28, out_features=128)
|
|
self.c_d1_bn = nn.BatchNorm1d(128)
|
|
self.c_d1_drop = nn.Dropout(0.3)
|
|
self.c_d2 = nn.Linear(in_features=128, out_features=10)
|
|
self.example_input_array = torch.rand(2, 1, 28, 28)
|
|
|
|
def forward(self, x):
|
|
x = x.view(x.size(0), -1)
|
|
x = self.c_d1(x)
|
|
x = torch.tanh(x)
|
|
x = self.c_d1_bn(x)
|
|
x = self.c_d1_drop(x)
|
|
x = self.c_d2(x)
|
|
return x
|
|
|
|
def training_step(self, batch, batch_nb):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
return {"loss": loss}
|
|
|
|
def configure_optimizers(self):
|
|
return torch.optim.Adam(self.parameters(), lr=0.02)
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(MNIST(root=_PATH_DATASETS, train=True, download=True), batch_size=128, num_workers=1)
|
|
|
|
|
|
class ParityModuleCIFAR(LightningModule):
|
|
def __init__(self, backbone="resnet101", hidden_dim=1024, learning_rate=1e-3, pretrained=True):
|
|
super().__init__()
|
|
self.save_hyperparameters()
|
|
|
|
self.learning_rate = learning_rate
|
|
self.num_classes = 10
|
|
self.backbone = getattr(models, backbone)(pretrained=pretrained)
|
|
|
|
self.classifier = torch.nn.Sequential(
|
|
torch.nn.Linear(1000, hidden_dim), torch.nn.Linear(hidden_dim, self.num_classes)
|
|
)
|
|
self.transform = transforms.Compose(
|
|
[transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
|
|
)
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self.backbone(x)
|
|
y_hat = self.classifier(y_hat)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
return {"loss": loss}
|
|
|
|
def configure_optimizers(self):
|
|
return torch.optim.Adam(self.parameters(), lr=self.learning_rate)
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(
|
|
CIFAR10(root=_PATH_DATASETS, train=True, download=True, transform=self.transform),
|
|
batch_size=32,
|
|
num_workers=1,
|
|
)
|