42 lines
1.7 KiB
Python
42 lines
1.7 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
|
|
from pytorch_lightning.overrides.fairscale import _FAIRSCALE_AVAILABLE
|
|
from pytorch_lightning.plugins.precision.native_amp import NativeMixedPrecisionPlugin
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
if _FAIRSCALE_AVAILABLE:
|
|
from fairscale.optim import OSS
|
|
from fairscale.optim.grad_scaler import ShardedGradScaler
|
|
|
|
|
|
class ShardedNativeMixedPrecisionPlugin(NativeMixedPrecisionPlugin):
|
|
"""Native AMP for Sharded Training."""
|
|
|
|
def __init__(
|
|
self, precision: Union[str, int], device: str, scaler: Optional[torch.cuda.amp.GradScaler] = None
|
|
) -> None:
|
|
if not _FAIRSCALE_AVAILABLE:
|
|
raise MisconfigurationException(
|
|
"You have asked for sharded AMP but you have not installed it."
|
|
" Install `fairscale` using this guide: https://https://github.com/facebookresearch/fairscale"
|
|
)
|
|
super().__init__(precision, device, scaler=ShardedGradScaler() if scaler is None and precision == 16 else None)
|
|
|
|
def clip_grad_by_norm(self, optimizer: "OSS", clip_val: Union[int, float]) -> None:
|
|
optimizer.clip_grad_norm(clip_val)
|