lightning/pytorch_lightning/plugins/environments/kubeflow_environment.py

79 lines
2.9 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment
from pytorch_lightning.utilities import rank_zero_deprecation
log = logging.getLogger(__name__)
class KubeflowEnvironment(ClusterEnvironment):
"""Environment for distributed training using the `PyTorchJob`_ operator from `Kubeflow`_
.. _PyTorchJob: https://www.kubeflow.org/docs/components/training/pytorch/
.. _Kubeflow: https://www.kubeflow.org
"""
def __init__(self) -> None:
super().__init__()
# TODO: remove in 1.7
if hasattr(self, "is_using_kubeflow") and callable(self.is_using_kubeflow):
rank_zero_deprecation(
f"`{self.__class__.__name__}.is_using_kubeflow` has been deprecated in v1.6 and will be removed in"
f" v1.7. Implement the static method `detect()` instead (do not forget to add the `@staticmethod`"
f" decorator)."
)
@property
def creates_processes_externally(self) -> bool:
return True
@property
def main_address(self) -> str:
return os.environ["MASTER_ADDR"]
@property
def main_port(self) -> int:
return int(os.environ["MASTER_PORT"])
@staticmethod
def detect() -> bool:
"""Returns ``True`` if the current process was launched using Kubeflow PyTorchJob."""
required_env_vars = {"KUBERNETES_PORT", "MASTER_ADDR", "MASTER_PORT", "WORLD_SIZE", "RANK"}
# torchelastic sets these. Make sure we're not in torchelastic
excluded_env_vars = {"GROUP_RANK", "LOCAL_RANK", "LOCAL_WORLD_SIZE"}
env_vars = os.environ.keys()
return required_env_vars.issubset(env_vars) and excluded_env_vars.isdisjoint(env_vars)
def world_size(self) -> int:
return int(os.environ["WORLD_SIZE"])
def set_world_size(self, size: int) -> None:
log.debug("KubeflowEnvironment.set_world_size was called, but setting world size is not allowed. Ignored.")
def global_rank(self) -> int:
return int(os.environ["RANK"])
def set_global_rank(self, rank: int) -> None:
log.debug("KubeflowEnvironment.set_global_rank was called, but setting global rank is not allowed. Ignored.")
def local_rank(self) -> int:
return 0
def node_rank(self) -> int:
return self.global_rank()