lightning/pytorch_lightning/overrides/data_parallel.py

118 lines
4.7 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numbers
import warnings
from typing import Any, cast, Union
import torch
import pytorch_lightning as pl
from pytorch_lightning.overrides.base import _LightningModuleWrapperBase, _LightningPrecisionModuleWrapperBase
from pytorch_lightning.utilities.apply_func import apply_to_collection
from pytorch_lightning.utilities.rank_zero import rank_zero_warn
def _ignore_scalar_return_in_dp() -> None:
# Users get confused by this warning so we silence it
warnings.filterwarnings(
"ignore",
message=(
"Was asked to gather along dimension 0, but all input tensors were scalars;"
" will instead unsqueeze and return a vector."
),
)
class LightningParallelModule(_LightningModuleWrapperBase):
"""Wraps the user's LightningModule and redirects the forward call to the appropriate method, either
``training_step``, ``validation_step``, ``test_step``, or ``predict_step``.
This class is used in combination with :class:`~torch.nn.parallel.DataParallel` as shown in the example.
It also takes care of converting Python scalars to Tensors and un-squeezes 0-dimensional Tensors as it is required
by :class:`~torch.nn.parallel.DataParallel`.
Example:
dp_model = torch.nn.DataParallel(
module=LightningParallelModule(lightning_module),
device_ids=[3, 4],
...
)
Args:
pl_module: the model to wrap
"""
def __init__(self, pl_module: Union["pl.LightningModule", _LightningPrecisionModuleWrapperBase]) -> None:
super().__init__(pl_module)
_ignore_scalar_return_in_dp()
def forward(self, *inputs: Any, **kwargs: Any) -> Any:
self.update_replica_device_attributes(inputs)
# forward call will redirect to training_step, validation_step, etc.
output = super().forward(*inputs, **kwargs)
def output_transform(data: Any) -> Any:
device = cast(torch.device, self.module.device)
data = python_scalar_to_tensor(data, device)
data = unsqueeze_scalar_tensor(data)
return data
output = apply_to_collection(output, dtype=(numbers.Number, torch.Tensor), function=output_transform)
return output
def update_replica_device_attributes(self, inputs: Any) -> None:
"""Updates the device information of LightningModule by reading the device from the inputs. In
:class:`~torch.nn.data_parallel.DataParallel` changes to the state during the `forward` pass are lost when
the replicas get discarded. The only way to know the current device is from the inputs passed into the
model.
Args:
inputs: A collection of inputs (typically a tuple). If the inputs don't contain tensors,
a warning is shown that accessing ``self.device`` will not return the correct device.
"""
replica_device = None
def find_tensor_with_device(tensor: torch.Tensor) -> torch.Tensor:
nonlocal replica_device
if replica_device is None and tensor.device != torch.device("cpu"):
replica_device = tensor.device
return tensor
apply_to_collection(inputs, dtype=torch.Tensor, function=find_tensor_with_device)
if replica_device is not None:
# by calling .to() we force the update to the self.device property
self.module.to(device=replica_device)
else:
rank_zero_warn(
"Could not determine on which device the inputs are."
" When using DataParallel (strategy='dp'), be aware that in case you are using self.device"
" in your code, it will reference only the root device."
)
def python_scalar_to_tensor(data: Any, device: Union[str, torch.device] = torch.device("cpu")) -> Any:
"""Converts a Python scalar number to a torch tensor and places it on the given device."""
if isinstance(data, numbers.Number):
data = torch.tensor([data], device=device)
return data
def unsqueeze_scalar_tensor(data: Any) -> Any:
"""Un-squeezes a 0-dim tensor."""
if isinstance(data, torch.Tensor) and data.dim() == 0:
data = data.unsqueeze(0)
return data