325 lines
12 KiB
Python
325 lines
12 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
TensorBoard Logger
|
|
------------------
|
|
"""
|
|
|
|
import logging
|
|
import os
|
|
from argparse import Namespace
|
|
from typing import Any, Callable, Dict, Mapping, Optional, Sequence, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
from torch.utils.tensorboard.summary import hparams
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.core.saving import save_hparams_to_yaml
|
|
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment
|
|
from pytorch_lightning.utilities.cloud_io import get_filesystem
|
|
from pytorch_lightning.utilities.imports import _OMEGACONF_AVAILABLE
|
|
from pytorch_lightning.utilities.logger import _add_prefix, _convert_params, _flatten_dict
|
|
from pytorch_lightning.utilities.logger import _sanitize_params as _utils_sanitize_params
|
|
from pytorch_lightning.utilities.rank_zero import rank_zero_only, rank_zero_warn
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
if _OMEGACONF_AVAILABLE:
|
|
from omegaconf import Container, OmegaConf
|
|
|
|
|
|
class TensorBoardLogger(LightningLoggerBase):
|
|
r"""
|
|
Log to local file system in `TensorBoard <https://www.tensorflow.org/tensorboard>`_ format.
|
|
|
|
Implemented using :class:`~torch.utils.tensorboard.SummaryWriter`. Logs are saved to
|
|
``os.path.join(save_dir, name, version)``. This is the default logger in Lightning, it comes
|
|
preinstalled.
|
|
|
|
Example:
|
|
|
|
.. testcode::
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.loggers import TensorBoardLogger
|
|
|
|
logger = TensorBoardLogger("tb_logs", name="my_model")
|
|
trainer = Trainer(logger=logger)
|
|
|
|
Args:
|
|
save_dir: Save directory
|
|
name: Experiment name. Defaults to ``'default'``. If it is the empty string then no per-experiment
|
|
subdirectory is used.
|
|
version: Experiment version. If version is not specified the logger inspects the save
|
|
directory for existing versions, then automatically assigns the next available version.
|
|
If it is a string then it is used as the run-specific subdirectory name,
|
|
otherwise ``'version_${version}'`` is used.
|
|
log_graph: Adds the computational graph to tensorboard. This requires that
|
|
the user has defined the `self.example_input_array` attribute in their
|
|
model.
|
|
default_hp_metric: Enables a placeholder metric with key `hp_metric` when `log_hyperparams` is
|
|
called without a metric (otherwise calls to log_hyperparams without a metric are ignored).
|
|
prefix: A string to put at the beginning of metric keys.
|
|
sub_dir: Sub-directory to group TensorBoard logs. If a sub_dir argument is passed
|
|
then logs are saved in ``/save_dir/name/version/sub_dir/``. Defaults to ``None`` in which
|
|
logs are saved in ``/save_dir/name/version/``.
|
|
\**kwargs: Additional arguments used by :class:`SummaryWriter` can be passed as keyword
|
|
arguments in this logger. To automatically flush to disk, `max_queue` sets the size
|
|
of the queue for pending logs before flushing. `flush_secs` determines how many seconds
|
|
elapses before flushing.
|
|
|
|
"""
|
|
NAME_HPARAMS_FILE = "hparams.yaml"
|
|
LOGGER_JOIN_CHAR = "-"
|
|
|
|
def __init__(
|
|
self,
|
|
save_dir: str,
|
|
name: Optional[str] = "lightning_logs",
|
|
version: Optional[Union[int, str]] = None,
|
|
log_graph: bool = False,
|
|
default_hp_metric: bool = True,
|
|
prefix: str = "",
|
|
sub_dir: Optional[str] = None,
|
|
agg_key_funcs: Optional[Mapping[str, Callable[[Sequence[float]], float]]] = None,
|
|
agg_default_func: Optional[Callable[[Sequence[float]], float]] = None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(agg_key_funcs=agg_key_funcs, agg_default_func=agg_default_func)
|
|
self._save_dir = save_dir
|
|
self._name = name or ""
|
|
self._version = version
|
|
self._sub_dir = sub_dir
|
|
self._log_graph = log_graph
|
|
self._default_hp_metric = default_hp_metric
|
|
self._prefix = prefix
|
|
self._fs = get_filesystem(save_dir)
|
|
|
|
self._experiment = None
|
|
self.hparams = {}
|
|
self._kwargs = kwargs
|
|
|
|
@property
|
|
def root_dir(self) -> str:
|
|
"""Parent directory for all tensorboard checkpoint subdirectories.
|
|
|
|
If the experiment name parameter is an empty string, no experiment subdirectory is used and the checkpoint will
|
|
be saved in "save_dir/version"
|
|
"""
|
|
return os.path.join(self.save_dir, self.name)
|
|
|
|
@property
|
|
def log_dir(self) -> str:
|
|
"""The directory for this run's tensorboard checkpoint.
|
|
|
|
By default, it is named ``'version_${self.version}'`` but it can be overridden by passing a string value for the
|
|
constructor's version parameter instead of ``None`` or an int.
|
|
"""
|
|
# create a pseudo standard path ala test-tube
|
|
version = self.version if isinstance(self.version, str) else f"version_{self.version}"
|
|
log_dir = os.path.join(self.root_dir, version)
|
|
if isinstance(self.sub_dir, str):
|
|
log_dir = os.path.join(log_dir, self.sub_dir)
|
|
log_dir = os.path.expandvars(log_dir)
|
|
log_dir = os.path.expanduser(log_dir)
|
|
return log_dir
|
|
|
|
@property
|
|
def save_dir(self) -> Optional[str]:
|
|
"""Gets the save directory where the TensorBoard experiments are saved.
|
|
|
|
Returns:
|
|
The local path to the save directory where the TensorBoard experiments are saved.
|
|
"""
|
|
return self._save_dir
|
|
|
|
@property
|
|
def sub_dir(self) -> Optional[str]:
|
|
"""Gets the sub directory where the TensorBoard experiments are saved.
|
|
|
|
Returns:
|
|
The local path to the sub directory where the TensorBoard experiments are saved.
|
|
"""
|
|
return self._sub_dir
|
|
|
|
@property
|
|
@rank_zero_experiment
|
|
def experiment(self) -> SummaryWriter:
|
|
r"""
|
|
Actual tensorboard object. To use TensorBoard features in your
|
|
:class:`~pytorch_lightning.core.lightning.LightningModule` do the following.
|
|
|
|
Example::
|
|
|
|
self.logger.experiment.some_tensorboard_function()
|
|
|
|
"""
|
|
if self._experiment is not None:
|
|
return self._experiment
|
|
|
|
assert rank_zero_only.rank == 0, "tried to init log dirs in non global_rank=0"
|
|
if self.root_dir:
|
|
self._fs.makedirs(self.root_dir, exist_ok=True)
|
|
self._experiment = SummaryWriter(log_dir=self.log_dir, **self._kwargs)
|
|
return self._experiment
|
|
|
|
@rank_zero_only
|
|
def log_hyperparams(
|
|
self, params: Union[Dict[str, Any], Namespace], metrics: Optional[Dict[str, Any]] = None
|
|
) -> None:
|
|
"""Record hyperparameters. TensorBoard logs with and without saved hyperparameters are incompatible, the
|
|
hyperparameters are then not displayed in the TensorBoard. Please delete or move the previously saved logs
|
|
to display the new ones with hyperparameters.
|
|
|
|
Args:
|
|
params: a dictionary-like container with the hyperparameters
|
|
metrics: Dictionary with metric names as keys and measured quantities as values
|
|
"""
|
|
|
|
params = _convert_params(params)
|
|
|
|
# store params to output
|
|
if _OMEGACONF_AVAILABLE and isinstance(params, Container):
|
|
self.hparams = OmegaConf.merge(self.hparams, params)
|
|
else:
|
|
self.hparams.update(params)
|
|
|
|
# format params into the suitable for tensorboard
|
|
params = _flatten_dict(params)
|
|
params = self._sanitize_params(params)
|
|
|
|
if metrics is None:
|
|
if self._default_hp_metric:
|
|
metrics = {"hp_metric": -1}
|
|
elif not isinstance(metrics, dict):
|
|
metrics = {"hp_metric": metrics}
|
|
|
|
if metrics:
|
|
self.log_metrics(metrics, 0)
|
|
exp, ssi, sei = hparams(params, metrics)
|
|
writer = self.experiment._get_file_writer()
|
|
writer.add_summary(exp)
|
|
writer.add_summary(ssi)
|
|
writer.add_summary(sei)
|
|
|
|
@rank_zero_only
|
|
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
|
|
assert rank_zero_only.rank == 0, "experiment tried to log from global_rank != 0"
|
|
|
|
metrics = _add_prefix(metrics, self._prefix, self.LOGGER_JOIN_CHAR)
|
|
|
|
for k, v in metrics.items():
|
|
if isinstance(v, torch.Tensor):
|
|
v = v.item()
|
|
|
|
if isinstance(v, dict):
|
|
self.experiment.add_scalars(k, v, step)
|
|
else:
|
|
try:
|
|
self.experiment.add_scalar(k, v, step)
|
|
# todo: specify the possible exception
|
|
except Exception as ex:
|
|
m = f"\n you tried to log {v} which is currently not supported. Try a dict or a scalar/tensor."
|
|
raise ValueError(m) from ex
|
|
|
|
@rank_zero_only
|
|
def log_graph(self, model: "pl.LightningModule", input_array=None):
|
|
if self._log_graph:
|
|
if input_array is None:
|
|
input_array = model.example_input_array
|
|
|
|
if input_array is not None:
|
|
input_array = model._apply_batch_transfer_handler(input_array)
|
|
model._running_torchscript = True
|
|
self.experiment.add_graph(model, input_array)
|
|
model._running_torchscript = False
|
|
else:
|
|
rank_zero_warn(
|
|
"Could not log computational graph since the"
|
|
" `model.example_input_array` attribute is not set"
|
|
" or `input_array` was not given",
|
|
)
|
|
|
|
@rank_zero_only
|
|
def save(self) -> None:
|
|
super().save()
|
|
dir_path = self.log_dir
|
|
|
|
# prepare the file path
|
|
hparams_file = os.path.join(dir_path, self.NAME_HPARAMS_FILE)
|
|
|
|
# save the metatags file if it doesn't exist and the log directory exists
|
|
if self._fs.isdir(dir_path) and not self._fs.isfile(hparams_file):
|
|
save_hparams_to_yaml(hparams_file, self.hparams)
|
|
|
|
@rank_zero_only
|
|
def finalize(self, status: str) -> None:
|
|
self.experiment.flush()
|
|
self.experiment.close()
|
|
self.save()
|
|
|
|
@property
|
|
def name(self) -> str:
|
|
"""Get the name of the experiment.
|
|
|
|
Returns:
|
|
The name of the experiment.
|
|
"""
|
|
return self._name
|
|
|
|
@property
|
|
def version(self) -> int:
|
|
"""Get the experiment version.
|
|
|
|
Returns:
|
|
The experiment version if specified else the next version.
|
|
"""
|
|
if self._version is None:
|
|
self._version = self._get_next_version()
|
|
return self._version
|
|
|
|
def _get_next_version(self):
|
|
root_dir = self.root_dir
|
|
|
|
try:
|
|
listdir_info = self._fs.listdir(root_dir)
|
|
except OSError:
|
|
log.warning("Missing logger folder: %s", root_dir)
|
|
return 0
|
|
|
|
existing_versions = []
|
|
for listing in listdir_info:
|
|
d = listing["name"]
|
|
bn = os.path.basename(d)
|
|
if self._fs.isdir(d) and bn.startswith("version_"):
|
|
dir_ver = bn.split("_")[1].replace("/", "")
|
|
existing_versions.append(int(dir_ver))
|
|
if len(existing_versions) == 0:
|
|
return 0
|
|
|
|
return max(existing_versions) + 1
|
|
|
|
@staticmethod
|
|
def _sanitize_params(params: Dict[str, Any]) -> Dict[str, Any]:
|
|
params = _utils_sanitize_params(params)
|
|
# logging of arrays with dimension > 1 is not supported, sanitize as string
|
|
return {k: str(v) if isinstance(v, (torch.Tensor, np.ndarray)) and v.ndim > 1 else v for k, v in params.items()}
|
|
|
|
def __getstate__(self):
|
|
state = self.__dict__.copy()
|
|
state["_experiment"] = None
|
|
return state
|