import os import platform import time from unittest import mock import pytest import torch from torch.utils.data.distributed import DistributedSampler from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.callbacks import Callback from pytorch_lightning.plugins.sharded_native_amp_plugin import ShardedNativeAMPPlugin from pytorch_lightning.plugins.sharded_plugin import DDPShardedPlugin, FAIRSCALE_AVAILABLE from pytorch_lightning.utilities import NATIVE_AMP_AVALAIBLE from tests.base.boring_model import BoringModel, RandomDataset @mock.patch.dict( os.environ, { "CUDA_VISIBLE_DEVICES": "0,1", "SLURM_NTASKS": "2", "SLURM_JOB_NAME": "SOME_NAME", "SLURM_NODEID": "0", "LOCAL_RANK": "0", "SLURM_LOCALID": "0", }, ) @mock.patch("torch.cuda.device_count", return_value=2) @pytest.mark.parametrize( ["ddp_backend", "gpus", "num_processes"], [("ddp_cpu", None, None), ("ddp", 2, 0), ("ddp2", 2, 0), ("ddp_spawn", 2, 0)], ) @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_choice_sharded(tmpdir, ddp_backend, gpus, num_processes): """ Test to ensure that plugin is correctly chosen """ class CB(Callback): def on_fit_start(self, trainer, pl_module): assert isinstance(trainer.accelerator_backend.ddp_plugin, DDPShardedPlugin) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, gpus=gpus, num_processes=num_processes, distributed_backend=ddp_backend, plugins=[DDPShardedPlugin()], callbacks=[CB()], ) with pytest.raises(SystemExit): trainer.fit(model) @mock.patch.dict( os.environ, { "CUDA_VISIBLE_DEVICES": "0,1", "SLURM_NTASKS": "2", "SLURM_JOB_NAME": "SOME_NAME", "SLURM_NODEID": "0", "LOCAL_RANK": "0", "SLURM_LOCALID": "0", }, ) @mock.patch("torch.cuda.device_count", return_value=2) @pytest.mark.parametrize( ["ddp_backend", "gpus", "num_processes"], [("ddp_cpu", None, None), ("ddp", 2, 0), ("ddp2", 2, 0), ("ddp_spawn", 2, 0)], ) @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") @pytest.mark.skipif(not NATIVE_AMP_AVALAIBLE, reason="Requires native AMP") def test_ddp_choice_sharded_amp(tmpdir, ddp_backend, gpus, num_processes): """ Test to ensure that plugin native amp plugin is correctly chosen when using sharded """ class CB(Callback): def on_fit_start(self, trainer, pl_module): assert isinstance(trainer.accelerator_backend.ddp_plugin, DDPShardedPlugin) assert isinstance(trainer.precision_connector.backend, ShardedNativeAMPPlugin) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, gpus=gpus, precision=16, num_processes=num_processes, distributed_backend=ddp_backend, plugins=[DDPShardedPlugin()], callbacks=[CB()], ) with pytest.raises(SystemExit): trainer.fit(model) @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_checkpoint_cpu(tmpdir): """ Test to ensure that checkpoint is saved correctly """ model = BoringModel() trainer = Trainer( accelerator='ddp_cpu', plugins=[DDPShardedPlugin()], fast_dev_run=True, ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, 'model.pt') trainer.save_checkpoint(checkpoint_path) saved_model = BoringModel.load_from_checkpoint(checkpoint_path) # Assert model parameters are identical after loading for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()): assert torch.equal(ddp_param, shard_param) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_checkpoint_multi_gpu(tmpdir): """ Test to ensure that checkpoint is saved correctly when using multiple GPUs """ model = BoringModel() trainer = Trainer( gpus=2, accelerator='ddp_spawn', plugins=[DDPShardedPlugin()], fast_dev_run=True, ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, 'model.pt') trainer.save_checkpoint(checkpoint_path) saved_model = BoringModel.load_from_checkpoint(checkpoint_path) # Assert model parameters are identical after loading for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()): assert torch.equal(ddp_param, shard_param) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_finetune(tmpdir): """ Test to ensure that we can save and restart training (simulate fine-tuning) """ model = BoringModel() trainer = Trainer( gpus=2, accelerator='ddp_spawn', plugins=[DDPShardedPlugin()], fast_dev_run=True, ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, 'model.pt') trainer.save_checkpoint(checkpoint_path) saved_model = BoringModel.load_from_checkpoint(checkpoint_path) trainer = Trainer( fast_dev_run=True, ) trainer.fit(saved_model) return 1 @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_resume_from_checkpoint(tmpdir): """ Test to ensure that resuming from checkpoint works """ model = BoringModel() trainer = Trainer( accelerator='ddp_cpu', plugins=[DDPShardedPlugin()], fast_dev_run=True, ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, 'model.pt') trainer.save_checkpoint(checkpoint_path) model = BoringModel() trainer = Trainer( accelerator='ddp_cpu', plugins=[DDPShardedPlugin()], fast_dev_run=True, resume_from_checkpoint=checkpoint_path ) trainer.fit(model) return 1 @pytest.mark.skip(reason="Currently unsupported restarting training on different number of devices.") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_resume_from_checkpoint_downsize_gpus(tmpdir): """ Test to ensure that resuming from checkpoint works when downsizing number of GPUS """ model = BoringModel() trainer = Trainer( accelerator='ddp_spawn', plugins=[DDPShardedPlugin()], fast_dev_run=True, gpus=2, ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, 'model.pt') trainer.save_checkpoint(checkpoint_path) model = BoringModel() trainer = Trainer( accelerator='ddp_spawn', plugins=[DDPShardedPlugin()], fast_dev_run=True, gpus=1, resume_from_checkpoint=checkpoint_path ) trainer.fit(model) return 1 @pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_resume_from_checkpoint_gpu_to_cpu(tmpdir): """ Test to ensure that resuming from checkpoint works when going from GPUs- > CPU """ model = BoringModel() trainer = Trainer( accelerator='ddp_spawn', plugins=[DDPShardedPlugin()], gpus=1, fast_dev_run=True ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, 'model.pt') trainer.save_checkpoint(checkpoint_path) model = BoringModel() trainer = Trainer( plugins=[DDPShardedPlugin()], accelerator='ddp_cpu', fast_dev_run=True, resume_from_checkpoint=checkpoint_path ) trainer.fit(model) return 1 @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_one_device(): # Allow slightly slower speed due to one CPU doing additional sequential memory saving calls run_sharded_correctness(accelerator='ddp_cpu', max_percent_speed_diff=0.5) @pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_one_gpu(): run_sharded_correctness(gpus=1, accelerator='ddp_spawn') @pytest.mark.skipif(not NATIVE_AMP_AVALAIBLE, reason="Requires native AMP") @pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_amp_one_gpu(): run_sharded_correctness(gpus=1, precision=16, accelerator='ddp_spawn') @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_multi_gpu(): run_sharded_correctness(gpus=2, accelerator='ddp_spawn') @pytest.mark.skipif(not NATIVE_AMP_AVALAIBLE, reason="Requires native AMP") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_amp_multi_gpu(): run_sharded_correctness(gpus=2, precision=16, accelerator='ddp_spawn') @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim(): """ Ensures same results using multiple optimizers across multiple GPUs """ run_sharded_correctness( gpus=2, accelerator='ddp_spawn', model_cls=TestMultipleOptimizersModel, max_percent_speed_diff=0.3 # Increase speed diff since only 2 GPUs sharding 2 optimizers ) @pytest.mark.skip(reason="Currently DDP manual optimization is broken due to no reduce within training step.") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available") @mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"}) def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim_manual(tmpdir): """ Ensures using multiple optimizers across multiple GPUs with manual optimization """ run_sharded_correctness( gpus=2, accelerator='ddp_spawn', model_cls=TestManualModel, ) class TestModel(BoringModel): """ Overrides training loader to ensure we enforce the same seed for all DDP processes. """ def train_dataloader(self): seed_everything(42) return torch.utils.data.DataLoader(RandomDataset(32, 64)) class TestManualModel(TestModel): def training_step(self, batch, batch_idx, optimizer_idx): # manual (opt_a, opt_b) = self.optimizers() loss_1 = self.step(batch) self.manual_backward(loss_1, opt_a) self.manual_optimizer_step(opt_a) # fake discriminator loss_2 = self.step(batch[0]) # ensure we forward the correct params to the optimizer # without retain_graph we can't do multiple backward passes self.manual_backward(loss_2, opt_b, retain_graph=True) self.manual_backward(loss_2, opt_a, retain_graph=True) self.manual_optimizer_step(opt_b) assert self.layer.weight.grad is None or torch.all(self.layer.weight.grad == 0) def training_epoch_end(self, outputs) -> None: # outputs should be an array with an entry per optimizer assert len(outputs) == 2 def configure_optimizers(self): optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1) return optimizer, optimizer_2 @property def automatic_optimization(self) -> bool: return False class TestMultipleOptimizersModel(TestModel): def training_step(self, batch, batch_idx, optimizer_idx): output = self.layer(batch) loss = self.loss(batch, output) return {"loss": loss} def training_epoch_end(self, outputs) -> None: # outputs should be an array with an entry per optimizer assert len(outputs) == 2 def configure_optimizers(self): optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1) return optimizer, optimizer_2 def record_ddp_fit_model_stats(trainer, model, gpus): """ Helper to calculate wall clock time for fit + max allocated memory. Args: trainer: The trainer object. model: The LightningModule. gpus: Number of GPUs in test. Returns: Max Memory if using GPUs, and total wall clock time. """ max_memory = None time_start = time.perf_counter() if gpus > 0: torch.cuda.reset_peak_memory_stats() torch.cuda.synchronize() trainer.fit(model) if gpus > 0: torch.cuda.synchronize() max_memory = torch.cuda.max_memory_allocated() / 2 ** 20 total_time = time.perf_counter() - time_start return max_memory, total_time def run_sharded_correctness( accelerator='ddp_spawn', gpus=0, precision=32, max_percent_speed_diff=0.25, model_cls=TestModel): """ Ensures that the trained model is identical to the standard DDP implementation. Also checks for speed/memory regressions, we should expect always less memory but performance to fluctuate. Args: accelerator: Accelerator type for test. gpus: Number of GPUS to enable. precision: Whether to use AMP or normal FP32 training. max_percent_speed_diff: The maximum speed difference compared to normal DDP training. This is more a safety net for variability in CI which can vary in speed, not for benchmarking. model_cls: Model class to use for test. """ # Train normal DDP seed_everything(42) ddp_model = model_cls() trainer = Trainer( fast_dev_run=True, max_epochs=1, gpus=gpus, precision=precision, accelerator=accelerator, ) max_ddp_memory, ddp_time = record_ddp_fit_model_stats( trainer=trainer, model=ddp_model, gpus=gpus ) # Reset and train sharded DDP seed_everything(42) sharded_model = model_cls() trainer = Trainer( fast_dev_run=True, max_epochs=1, gpus=gpus, precision=precision, accelerator=accelerator, plugins=[DDPShardedPlugin()], ) max_sharded_memory, sharded_time = record_ddp_fit_model_stats( trainer=trainer, model=sharded_model, gpus=gpus ) # Assert model parameters are identical after fit for ddp_param, shard_param in zip(ddp_model.parameters(), sharded_model.parameters()): assert torch.equal(ddp_param, shard_param), 'Model parameters are different between DDP and Sharded plugin' # Assert speed parity by ensuring percentage difference between sharded/ddp is below threshold percent_diff = (sharded_time - ddp_time) / sharded_time assert percent_diff <= max_percent_speed_diff, \ f'Sharded plugin was too slow compared to DDP, Sharded Time: {sharded_time}, DDP Time: {ddp_time}' if gpus > 0: # Assert CUDA memory parity assert max_sharded_memory <= max_ddp_memory, \ f'Sharded plugin used too much memory compared to DDP,' \ f'Sharded Mem: {max_sharded_memory}, DDP Mem: {max_ddp_memory}'