# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import CSVLogger, TensorBoardLogger from tests.helpers.boring_model import BoringModel class TestModel(BoringModel): def __init__(self, expected_log_dir): super().__init__() self.expected_log_dir = expected_log_dir def training_step(self, *args, **kwargs): assert self.trainer.log_dir == self.expected_log_dir return super().training_step(*args, **kwargs) def test_logdir(tmpdir): """Tests that the path is correct when checkpoint and loggers are used.""" expected = os.path.join(tmpdir, "lightning_logs", "version_0") model = TestModel(expected) trainer = Trainer(default_root_dir=tmpdir, max_steps=2, callbacks=[ModelCheckpoint(dirpath=tmpdir)]) assert trainer.log_dir == expected trainer.fit(model) assert trainer.log_dir == expected def test_logdir_no_checkpoint_cb(tmpdir): """Tests that the path is correct with no checkpoint.""" expected = os.path.join(tmpdir, "lightning_logs", "version_0") model = TestModel(expected) trainer = Trainer(default_root_dir=tmpdir, max_steps=2, enable_checkpointing=False) assert trainer.log_dir == expected trainer.fit(model) assert trainer.log_dir == expected def test_logdir_no_logger(tmpdir): """Tests that the path is correct even when there is no logger.""" expected = os.path.join(tmpdir) model = TestModel(expected) trainer = Trainer(default_root_dir=tmpdir, max_steps=2, logger=False, callbacks=[ModelCheckpoint(dirpath=tmpdir)]) assert trainer.log_dir == expected trainer.fit(model) assert trainer.log_dir == expected def test_logdir_no_logger_no_checkpoint(tmpdir): """Tests that the path is correct even when there is no logger.""" expected = os.path.join(tmpdir) model = TestModel(expected) trainer = Trainer(default_root_dir=tmpdir, max_steps=2, logger=False, enable_checkpointing=False) assert trainer.log_dir == expected trainer.fit(model) assert trainer.log_dir == expected def test_logdir_custom_callback(tmpdir): """Tests that the path is correct even when there is a custom callback.""" expected = os.path.join(tmpdir, "lightning_logs", "version_0") model = TestModel(expected) trainer = Trainer( default_root_dir=tmpdir, max_steps=2, callbacks=[ModelCheckpoint(dirpath=os.path.join(tmpdir, "ckpts"))] ) assert trainer.log_dir == expected trainer.fit(model) assert trainer.log_dir == expected def test_logdir_custom_logger(tmpdir): """Tests that the path is correct even when there is a custom logger.""" expected = os.path.join(tmpdir, "custom_logs", "version_0") model = TestModel(expected) trainer = Trainer( default_root_dir=tmpdir, max_steps=2, callbacks=[ModelCheckpoint(dirpath=tmpdir)], logger=TensorBoardLogger(save_dir=tmpdir, name="custom_logs"), ) assert trainer.log_dir == expected trainer.fit(model) assert trainer.log_dir == expected def test_logdir_multiple_loggers(tmpdir): """Tests that the logdir equals the default_root_dir when trainer has multiple loggers.""" default_root_dir = tmpdir / "default_root_dir" save_dir = tmpdir / "save_dir" model = TestModel(default_root_dir) trainer = Trainer( default_root_dir=default_root_dir, max_steps=2, logger=[TensorBoardLogger(save_dir=save_dir, name="custom_logs"), CSVLogger(tmpdir)], ) assert trainer.log_dir == default_root_dir trainer.fit(model) assert trainer.log_dir == default_root_dir