import atexit import inspect import os import pickle import platform from unittest import mock import pytest import tests.base.develop_utils as tutils from pytorch_lightning import Trainer, Callback from pytorch_lightning.loggers import ( TensorBoardLogger, MLFlowLogger, NeptuneLogger, TestTubeLogger, CometLogger, WandbLogger, ) from pytorch_lightning.loggers.base import DummyExperiment from tests.base import EvalModelTemplate from tests.loggers.test_comet import _patch_comet_atexit def _get_logger_args(logger_class, save_dir): logger_args = {} if 'save_dir' in inspect.getfullargspec(logger_class).args: logger_args.update(save_dir=str(save_dir)) if 'offline_mode' in inspect.getfullargspec(logger_class).args: logger_args.update(offline_mode=True) if 'offline' in inspect.getfullargspec(logger_class).args: logger_args.update(offline=True) return logger_args @pytest.mark.parametrize("logger_class", [ TensorBoardLogger, CometLogger, MLFlowLogger, NeptuneLogger, TestTubeLogger, WandbLogger, ]) @mock.patch('pytorch_lightning.loggers.neptune.neptune') @mock.patch('pytorch_lightning.loggers.wandb.wandb') def test_loggers_fit_test(wandb, neptune, tmpdir, monkeypatch, logger_class): """Verify that basic functionality of all loggers.""" os.environ['PL_DEV_DEBUG'] = '0' _patch_comet_atexit(monkeypatch) model = EvalModelTemplate() class StoreHistoryLogger(logger_class): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.history = [] def log_metrics(self, metrics, step): super().log_metrics(metrics, step) self.history.append((step, metrics)) logger_args = _get_logger_args(logger_class, tmpdir) logger = StoreHistoryLogger(**logger_args) if logger_class == WandbLogger: # required mocks for Trainer logger.experiment.id = 'foo' logger.experiment.project_name.return_value = 'bar' trainer = Trainer( max_epochs=1, logger=logger, limit_train_batches=0.2, limit_val_batches=0.5, fast_dev_run=True, default_root_dir=tmpdir, ) trainer.fit(model) trainer.test() log_metric_names = [(s, sorted(m.keys())) for s, m in logger.history] if logger_class == TensorBoardLogger: expected = [ (0, ['hp_metric']), (0, ['epoch', 'train_some_val']), (0, ['early_stop_on', 'epoch', 'val_acc']), (0, ['hp_metric']), (1, ['epoch', 'test_acc', 'test_loss']) ] assert log_metric_names == expected else: expected = [ (0, ['epoch', 'train_some_val']), (0, ['early_stop_on', 'epoch', 'val_acc']), (1, ['epoch', 'test_acc', 'test_loss']) ] assert log_metric_names == expected @pytest.mark.parametrize("logger_class", [ TensorBoardLogger, CometLogger, MLFlowLogger, TestTubeLogger, WandbLogger, ]) @mock.patch('pytorch_lightning.loggers.wandb.wandb') def test_loggers_save_dir_and_weights_save_path(wandb, tmpdir, monkeypatch, logger_class): """ Test the combinations of save_dir, weights_save_path and default_root_dir. """ _patch_comet_atexit(monkeypatch) class TestLogger(logger_class): # for this test it does not matter what these attributes are # so we standardize them to make testing easier @property def version(self): return 'version' @property def name(self): return 'name' model = EvalModelTemplate() trainer_args = dict( default_root_dir=tmpdir, max_steps=1, ) # no weights_save_path given save_dir = tmpdir / 'logs' weights_save_path = None logger = TestLogger(**_get_logger_args(TestLogger, save_dir)) trainer = Trainer(**trainer_args, logger=logger, weights_save_path=weights_save_path) trainer.fit(model) assert trainer.weights_save_path == trainer.default_root_dir assert trainer.checkpoint_callback.dirpath == os.path.join(logger.save_dir, 'name', 'version', 'checkpoints') assert trainer.default_root_dir == tmpdir # with weights_save_path given, the logger path and checkpoint path should be different save_dir = tmpdir / 'logs' weights_save_path = tmpdir / 'weights' logger = TestLogger(**_get_logger_args(TestLogger, save_dir)) trainer = Trainer(**trainer_args, logger=logger, weights_save_path=weights_save_path) trainer.fit(model) assert trainer.weights_save_path == weights_save_path assert trainer.logger.save_dir == save_dir assert trainer.checkpoint_callback.dirpath == weights_save_path / 'name' / 'version' / 'checkpoints' assert trainer.default_root_dir == tmpdir # no logger given weights_save_path = tmpdir / 'weights' trainer = Trainer(**trainer_args, logger=False, weights_save_path=weights_save_path) trainer.fit(model) assert trainer.weights_save_path == weights_save_path assert trainer.checkpoint_callback.dirpath == weights_save_path / 'checkpoints' assert trainer.default_root_dir == tmpdir @pytest.mark.parametrize("logger_class", [ CometLogger, MLFlowLogger, NeptuneLogger, TensorBoardLogger, TestTubeLogger, # The WandbLogger gets tested for pickling in its own test. ]) def test_loggers_pickle_all(tmpdir, monkeypatch, logger_class): """ Test that the logger objects can be pickled. This test only makes sense if the packages are installed. """ _patch_comet_atexit(monkeypatch) try: _test_loggers_pickle(tmpdir, monkeypatch, logger_class) except (ImportError, ModuleNotFoundError): pytest.xfail(f"pickle test requires {logger_class.__class__} dependencies to be installed.") def _test_loggers_pickle(tmpdir, monkeypatch, logger_class): """Verify that pickling trainer with logger works.""" _patch_comet_atexit(monkeypatch) logger_args = _get_logger_args(logger_class, tmpdir) logger = logger_class(**logger_args) # this can cause pickle error if the experiment object is not picklable # the logger needs to remove it from the state before pickle _ = logger.experiment # test pickling loggers pickle.dumps(logger) trainer = Trainer( max_epochs=1, logger=logger, ) pkl_bytes = pickle.dumps(trainer) trainer2 = pickle.loads(pkl_bytes) trainer2.logger.log_metrics({'acc': 1.0}) # make sure we restord properly assert trainer2.logger.name == logger.name assert trainer2.logger.save_dir == logger.save_dir @pytest.mark.parametrize("extra_params", [ pytest.param(dict(max_epochs=1, auto_scale_batch_size=True), id='Batch-size-Finder'), pytest.param(dict(max_epochs=3, auto_lr_find=True), id='LR-Finder'), ]) def test_logger_reset_correctly(tmpdir, extra_params): """ Test that the tuners do not alter the logger reference """ tutils.reset_seed() model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, **extra_params, ) logger1 = trainer.logger trainer.tune(model) logger2 = trainer.logger logger3 = model.logger assert logger1 == logger2, \ 'Finder altered the logger of trainer' assert logger2 == logger3, \ 'Finder altered the logger of model' class RankZeroLoggerCheck(Callback): # this class has to be defined outside the test function, otherwise we get pickle error # due to the way ddp process is launched def on_train_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx): is_dummy = isinstance(trainer.logger.experiment, DummyExperiment) if trainer.is_global_zero: assert not is_dummy else: assert is_dummy assert pl_module.logger.experiment.something(foo="bar") is None @pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows") @pytest.mark.parametrize("logger_class", [ TensorBoardLogger, MLFlowLogger, # NeptuneLogger, # TODO: fix: https://github.com/PyTorchLightning/pytorch-lightning/pull/3256 TestTubeLogger, ]) @mock.patch('pytorch_lightning.loggers.neptune.neptune') def test_logger_created_on_rank_zero_only(neptune, tmpdir, monkeypatch, logger_class): """ Test that loggers get replaced by dummy loggers on global rank > 0""" _patch_comet_atexit(monkeypatch) logger_args = _get_logger_args(logger_class, tmpdir) logger = logger_class(**logger_args) model = EvalModelTemplate() trainer = Trainer( logger=logger, default_root_dir=tmpdir, distributed_backend='ddp_cpu', num_processes=2, max_steps=1, checkpoint_callback=True, callbacks=[RankZeroLoggerCheck()], ) result = trainer.fit(model) assert result == 1