.. testsetup:: * from pytorch_lightning.core.lightning import LightningModule Multiple Datasets ================= Lightning supports multiple dataloaders in a few ways. 1. Create a dataloader that iterates both datasets under the hood. 2. In the validation and test loop you also have the option to return multiple dataloaders which lightning will call sequentially. Multiple training dataloaders ----------------------------- For training, the best way to use multiple-dataloaders is to create a Dataloader class which wraps both your dataloaders. (This of course also works for testing and validation dataloaders). (`reference `_) .. testcode:: class ConcatDataset(torch.utils.data.Dataset): def __init__(self, *datasets): self.datasets = datasets def __getitem__(self, i): return tuple(d[i] for d in self.datasets) def __len__(self): return min(len(d) for d in self.datasets) class LitModel(LightningModule): def train_dataloader(self): concat_dataset = ConcatDataset( datasets.ImageFolder(traindir_A), datasets.ImageFolder(traindir_B) ) loader = torch.utils.data.DataLoader( concat_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True ) return loader def val_dataloader(self): # SAME ... def test_dataloader(self): # SAME ... Test/Val dataloaders -------------------- For validation, test dataloaders lightning also gives you the additional option of passing in multiple dataloaders back from each call. See the following for more details: - :meth:`~pytorch_lightning.core.LightningModule.val_dataloader` - :meth:`~pytorch_lightning.core.LightningModule.test_dataloader` .. testcode:: def val_dataloader(self): loader_1 = Dataloader() loader_2 = Dataloader() return [loader_1, loader_2]