# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Tuple, Optional import torch from pytorch_lightning.utilities import rank_zero_warn METRIC_EPS = 1e-6 def dim_zero_cat(x): x = x if isinstance(x, (list, tuple)) else [x] return torch.cat(x, dim=0) def dim_zero_sum(x): return torch.sum(x, dim=0) def dim_zero_mean(x): return torch.mean(x, dim=0) def _flatten(x): return [item for sublist in x for item in sublist] def _check_same_shape(pred: torch.Tensor, target: torch.Tensor): """ Check that predictions and target have the same shape, else raise error """ if pred.shape != target.shape: raise RuntimeError("Predictions and targets are expected to have the same shape") def _input_format_classification( preds: torch.Tensor, target: torch.Tensor, threshold: float = 0.5 ) -> Tuple[torch.Tensor, torch.Tensor]: """Convert preds and target tensors into label tensors Args: preds: either tensor with labels, tensor with probabilities/logits or multilabel tensor target: tensor with ground true labels threshold: float used for thresholding multilabel input Returns: preds: tensor with labels target: tensor with labels """ if not (preds.ndim == target.ndim or preds.ndim == target.ndim + 1): raise ValueError("preds and target must have same number of dimensions, or one additional dimension for preds") if preds.ndim == target.ndim + 1: # multi class probabilites preds = torch.argmax(preds, dim=1) if preds.ndim == target.ndim and preds.is_floating_point(): # binary or multilabel probablities preds = (preds >= threshold).long() return preds, target def _input_format_classification_one_hot( num_classes: int, preds: torch.Tensor, target: torch.Tensor, threshold: float = 0.5, multilabel: bool = False ) -> Tuple[torch.Tensor, torch.Tensor]: """Convert preds and target tensors into one hot spare label tensors Args: num_classes: number of classes preds: either tensor with labels, tensor with probabilities/logits or multilabel tensor target: tensor with ground true labels threshold: float used for thresholding multilabel input multilabel: boolean flag indicating if input is multilabel Returns: preds: one hot tensor of shape [num_classes, -1] with predicted labels target: one hot tensors of shape [num_classes, -1] with true labels """ if not (preds.ndim == target.ndim or preds.ndim == target.ndim + 1): raise ValueError("preds and target must have same number of dimensions, or one additional dimension for preds") if preds.ndim == target.ndim + 1: # multi class probabilites preds = torch.argmax(preds, dim=1) if preds.ndim == target.ndim and preds.dtype in (torch.long, torch.int) and num_classes > 1 and not multilabel: # multi-class preds = to_onehot(preds, num_classes=num_classes) target = to_onehot(target, num_classes=num_classes) elif preds.ndim == target.ndim and preds.is_floating_point(): # binary or multilabel probablities preds = (preds >= threshold).long() # transpose class as first dim and reshape if preds.ndim > 1: preds = preds.transpose(1, 0) target = target.transpose(1, 0) return preds.reshape(num_classes, -1), target.reshape(num_classes, -1) def to_onehot( label_tensor: torch.Tensor, num_classes: Optional[int] = None, ) -> torch.Tensor: """ Converts a dense label tensor to one-hot format Args: label_tensor: dense label tensor, with shape [N, d1, d2, ...] num_classes: number of classes C Output: A sparse label tensor with shape [N, C, d1, d2, ...] Example: >>> x = torch.tensor([1, 2, 3]) >>> to_onehot(x) tensor([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) """ if num_classes is None: num_classes = int(label_tensor.max().detach().item() + 1) tensor_onehot = torch.zeros( label_tensor.shape[0], num_classes, *label_tensor.shape[1:], dtype=label_tensor.dtype, device=label_tensor.device, ) index = label_tensor.long().unsqueeze(1).expand_as(tensor_onehot) return tensor_onehot.scatter_(1, index, 1.0) def select_topk(prob_tensor: torch.Tensor, topk: int = 1, dim: int = 1) -> torch.Tensor: """ Convert a probability tensor to binary by selecting top-k highest entries. Args: prob_tensor: dense tensor of shape ``[..., C, ...]``, where ``C`` is in the position defined by the ``dim`` argument topk: number of highest entries to turn into 1s dim: dimension on which to compare entries Output: A binary tensor of the same shape as the input tensor of type torch.int32 Example: >>> x = torch.tensor([[1.1, 2.0, 3.0], [2.0, 1.0, 0.5]]) >>> select_topk(x, topk=2) tensor([[0, 1, 1], [1, 1, 0]], dtype=torch.int32) """ zeros = torch.zeros_like(prob_tensor) topk_tensor = zeros.scatter(dim, prob_tensor.topk(k=topk, dim=dim).indices, 1.0) return topk_tensor.int() def to_categorical(tensor: torch.Tensor, argmax_dim: int = 1) -> torch.Tensor: """ Converts a tensor of probabilities to a dense label tensor Args: tensor: probabilities to get the categorical label [N, d1, d2, ...] argmax_dim: dimension to apply Return: A tensor with categorical labels [N, d2, ...] Example: >>> x = torch.tensor([[0.2, 0.5], [0.9, 0.1]]) >>> to_categorical(x) tensor([1, 0]) """ return torch.argmax(tensor, dim=argmax_dim) def get_num_classes( pred: torch.Tensor, target: torch.Tensor, num_classes: Optional[int] = None, ) -> int: """ Calculates the number of classes for a given prediction and target tensor. Args: pred: predicted values target: true labels num_classes: number of classes if known Return: An integer that represents the number of classes. """ num_target_classes = int(target.max().detach().item() + 1) num_pred_classes = int(pred.max().detach().item() + 1) num_all_classes = max(num_target_classes, num_pred_classes) if num_classes is None: num_classes = num_all_classes elif num_classes != num_all_classes: rank_zero_warn( f"You have set {num_classes} number of classes which is" f" different from predicted ({num_pred_classes}) and" f" target ({num_target_classes}) number of classes", RuntimeWarning, ) return num_classes def reduce(to_reduce: torch.Tensor, reduction: str) -> torch.Tensor: """ Reduces a given tensor by a given reduction method Args: to_reduce : the tensor, which shall be reduced reduction : a string specifying the reduction method ('elementwise_mean', 'none', 'sum') Return: reduced Tensor Raise: ValueError if an invalid reduction parameter was given """ if reduction == "elementwise_mean": return torch.mean(to_reduce) if reduction == "none": return to_reduce if reduction == "sum": return torch.sum(to_reduce) raise ValueError("Reduction parameter unknown.") def class_reduce( num: torch.Tensor, denom: torch.Tensor, weights: torch.Tensor, class_reduction: str = "none" ) -> torch.Tensor: """ Function used to reduce classification metrics of the form `num / denom * weights`. For example for calculating standard accuracy the num would be number of true positives per class, denom would be the support per class, and weights would be a tensor of 1s Args: num: numerator tensor decom: denominator tensor weights: weights for each class class_reduction: reduction method for multiclass problems - ``'micro'``: calculate metrics globally (default) - ``'macro'``: calculate metrics for each label, and find their unweighted mean. - ``'weighted'``: calculate metrics for each label, and find their weighted mean. - ``'none'`` or ``None``: returns calculated metric per class """ valid_reduction = ("micro", "macro", "weighted", "none", None) if class_reduction == "micro": fraction = torch.sum(num) / torch.sum(denom) else: fraction = num / denom # We need to take care of instances where the denom can be 0 # for some (or all) classes which will produce nans fraction[fraction != fraction] = 0 if class_reduction == "micro": return fraction elif class_reduction == "macro": return torch.mean(fraction) elif class_reduction == "weighted": return torch.sum(fraction * (weights.float() / torch.sum(weights))) elif class_reduction == "none" or class_reduction is None: return fraction raise ValueError( f"Reduction parameter {class_reduction} unknown." f" Choose between one of these: {valid_reduction}" )