# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from typing import Any, Callable, Optional from pytorch_lightning.metrics.metric import Metric from pytorch_lightning.metrics.functional.mean_squared_error import ( _mean_squared_error_update, _mean_squared_error_compute ) class MeanSquaredError(Metric): r""" Computes `mean squared error `_ (MSE): .. math:: \text{MSE} = \frac{1}{N}\sum_i^N(y_i - \hat{y_i})^2 Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions. Args: compute_on_step: Forward only calls ``update()`` and return None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. default: False process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) Example: >>> from pytorch_lightning.metrics import MeanSquaredError >>> target = torch.tensor([2.5, 5.0, 4.0, 8.0]) >>> preds = torch.tensor([3.0, 5.0, 2.5, 7.0]) >>> mean_squared_error = MeanSquaredError() >>> mean_squared_error(preds, target) tensor(0.8750) """ def __init__( self, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): super().__init__( compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step, process_group=process_group, dist_sync_fn=dist_sync_fn, ) self.add_state("sum_squared_error", default=torch.tensor(0.0), dist_reduce_fx="sum") self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum") def update(self, preds: torch.Tensor, target: torch.Tensor): """ Update state with predictions and targets. Args: preds: Predictions from model target: Ground truth values """ sum_squared_error, n_obs = _mean_squared_error_update(preds, target) self.sum_squared_error += sum_squared_error self.total += n_obs def compute(self): """ Computes mean squared error over state. """ return _mean_squared_error_compute(self.sum_squared_error, self.total)