import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.base import EvalModelTemplate def test_error_on_more_than_1_optimizer(tmpdir): """ Check that error is thrown when more than 1 optimizer is passed """ model = EvalModelTemplate() model.configure_optimizers = model.configure_optimizers__multiple_schedulers # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, ) with pytest.raises(MisconfigurationException): trainer.lr_find(model) def test_model_reset_correctly(tmpdir): """ Check that model weights are correctly reset after lr_find() """ model = EvalModelTemplate() # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, ) before_state_dict = model.state_dict() _ = trainer.lr_find(model, num_training=5) after_state_dict = model.state_dict() for key in before_state_dict.keys(): assert torch.all(torch.eq(before_state_dict[key], after_state_dict[key])), \ 'Model was not reset correctly after learning rate finder' def test_trainer_reset_correctly(tmpdir): """ Check that all trainer parameters are reset correctly after lr_find() """ model = EvalModelTemplate() # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, ) changed_attributes = ['callbacks', 'logger', 'max_steps', 'auto_lr_find', 'early_stop_callback', 'accumulate_grad_batches', 'checkpoint_callback'] attributes_before = {} for ca in changed_attributes: attributes_before[ca] = getattr(trainer, ca) _ = trainer.lr_find(model, num_training=5) attributes_after = {} for ca in changed_attributes: attributes_after[ca] = getattr(trainer, ca) for key in changed_attributes: assert attributes_before[key] == attributes_after[key], \ f'Attribute {key} was not reset correctly after learning rate finder' def test_trainer_arg_bool(tmpdir): """ Test that setting trainer arg to bool works """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) before_lr = hparams.get('learning_rate') # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, auto_lr_find=True, ) trainer.fit(model) after_lr = model.learning_rate assert before_lr != after_lr, \ 'Learning rate was not altered after running learning rate finder' def test_trainer_arg_str(tmpdir): """ Test that setting trainer arg to string works """ model = EvalModelTemplate() model.my_fancy_lr = 1.0 # update with non-standard field before_lr = model.my_fancy_lr # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, auto_lr_find='my_fancy_lr', ) trainer.fit(model) after_lr = model.my_fancy_lr assert before_lr != after_lr, \ 'Learning rate was not altered after running learning rate finder' def test_call_to_trainer_method(tmpdir): """ Test that directly calling the trainer method works """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) before_lr = hparams.get('learning_rate') # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, ) lrfinder = trainer.lr_find(model, mode='linear') after_lr = lrfinder.suggestion() model.learning_rate = after_lr trainer.fit(model) assert before_lr != after_lr, \ 'Learning rate was not altered after running learning rate finder' def test_accumulation_and_early_stopping(tmpdir): """ Test that early stopping of learning rate finder works, and that accumulation also works for this feature """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) before_lr = hparams.get('learning_rate') # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, accumulate_grad_batches=2, ) lrfinder = trainer.lr_find(model, early_stop_threshold=None) after_lr = lrfinder.suggestion() assert before_lr != after_lr, \ 'Learning rate was not altered after running learning rate finder' assert len(lrfinder.results['lr']) == 100, \ 'Early stopping for learning rate finder did not work' assert lrfinder._total_batch_idx == 190, \ 'Accumulation parameter did not work' def test_suggestion_parameters_work(tmpdir): """ Test that default skipping does not alter results in basic case """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, ) lrfinder = trainer.lr_find(model) lr1 = lrfinder.suggestion(skip_begin=10) # default lr2 = lrfinder.suggestion(skip_begin=80) # way too high, should have an impact assert lr1 != lr2, \ 'Skipping parameter did not influence learning rate' def test_suggestion_with_non_finite_values(tmpdir): """ Test that non-finite values does not alter results """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, ) lrfinder = trainer.lr_find(model) before_lr = lrfinder.suggestion() lrfinder.results['loss'][-1] = float('nan') after_lr = lrfinder.suggestion() assert before_lr == after_lr, \ 'Learning rate was altered because of non-finite loss values'