# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pytorch_lightning.utilities import _module_available if _module_available('fairscale.nn.data_parallel.sharded_ddp'): from fairscale.nn.data_parallel.sharded_ddp import ShardedDataParallel class LightningShardedDataParallel(ShardedDataParallel): def forward(self, *inputs, **kwargs): if self.enable_broadcast_buffers: self.sync_buffers() if self.module.training: outputs = self.module.training_step(*inputs, **kwargs) elif self.module.testing: outputs = self.module.test_step(*inputs, **kwargs) else: outputs = self.module.validation_step(*inputs, **kwargs) return outputs FAIRSCALE_SHARDED_AVAILABLE = True else: FAIRSCALE_SHARDED_AVAILABLE = False