r""" Learning Rate Logger ==================== Log learning rate for lr schedulers during training """ from pytorch_lightning.callbacks.base import Callback from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities import rank_zero_warn class LearningRateLogger(Callback): r""" Automatically logs learning rate for learning rate schedulers during training. Example:: >>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import LearningRateLogger >>> lr_logger = LearningRateLogger() >>> trainer = Trainer(callbacks=[lr_logger]) Logging names are automatically determined based on optimizer class name. In case of multiple optimizers of same type, they will be named `Adam`, `Adam-1` etc. If a optimizer has multiple parameter groups they will be named `Adam/pg1`, `Adam/pg2` etc. To control naming, pass in a `name` keyword in the construction of the learning rate schdulers Example:: def configure_optimizer(self): optimizer = torch.optim.Adam(...) lr_scheduler = {'scheduler': torch.optim.lr_schedulers.LambdaLR(optimizer, ...) 'name': 'my_logging_name'} return [optimizer], [lr_scheduler] """ def __init__(self): self.lrs = None self.lr_sch_names = [] def on_train_start(self, trainer, pl_module): """ Called before training, determines unique names for all lr schedulers in the case of multiple of the same type or in the case of multiple parameter groups """ if not trainer.logger: raise MisconfigurationException( 'Cannot use LearningRateLogger callback with Trainer that has no logger.') if not trainer.lr_schedulers: rank_zero_warn( 'You are using LearningRateLogger callback with models that' ' have no learning rate schedulers. Please see documentation' ' for `configure_optimizers` method.', RuntimeWarning ) # Find names for schedulers names = self._find_names(trainer.lr_schedulers) # Initialize for storing values self.lrs = {name: [] for name in names} def on_train_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx): latest_stat = self._extract_lr(trainer, 'step') if trainer.logger and latest_stat: trainer.logger.log_metrics(latest_stat, step=trainer.global_step) def on_epoch_start(self, trainer, pl_module): latest_stat = self._extract_lr(trainer, 'epoch') if trainer.logger and latest_stat: trainer.logger.log_metrics(latest_stat, step=trainer.global_step) def _extract_lr(self, trainer, interval): """ Extracts learning rates for lr schedulers and saves information into dict structure. """ latest_stat = {} for name, scheduler in zip(self.lr_sch_names, trainer.lr_schedulers): if scheduler['interval'] == interval: param_groups = scheduler['scheduler'].optimizer.param_groups if len(param_groups) != 1: for i, pg in enumerate(param_groups): lr, key = pg['lr'], f'{name}/pg{i + 1}' self.lrs[key].append(lr) latest_stat[key] = lr else: self.lrs[name].append(param_groups[0]['lr']) latest_stat[name] = param_groups[0]['lr'] return latest_stat def _find_names(self, lr_schedulers): # Create uniqe names in the case we have multiple of the same learning # rate schduler + multiple parameter groups names = [] for scheduler in lr_schedulers: sch = scheduler['scheduler'] if 'name' in scheduler: name = scheduler['name'] else: opt_name = 'lr-' + sch.optimizer.__class__.__name__ i, name = 1, opt_name # Multiple schduler of the same type while True: if name not in names: break i, name = i + 1, f'{opt_name}-{i}' # Multiple param groups for the same schduler param_groups = sch.optimizer.param_groups if len(param_groups) != 1: for i, pg in enumerate(param_groups): temp = f'{name}/pg{i + 1}' names.append(temp) else: names.append(name) self.lr_sch_names.append(name) return names