import itertools import threading from itertools import chain import torch from torch.cuda._utils import _get_device_index from torch.nn import DataParallel from torch.nn.parallel import DistributedDataParallel def _find_tensors(obj): # pragma: no cover r""" Recursively find all tensors contained in the specified object. """ if isinstance(obj, torch.Tensor): return [obj] if isinstance(obj, (list, tuple)): return itertools.chain(*map(_find_tensors, obj)) if isinstance(obj, dict): return itertools.chain(*map(_find_tensors, obj.values())) return [] def get_a_var(obj): # pragma: no cover if isinstance(obj, torch.Tensor): return obj if isinstance(obj, (list, tuple)): for result in map(get_a_var, obj): if isinstance(result, torch.Tensor): return result if isinstance(obj, dict): for result in map(get_a_var, obj.items()): if isinstance(result, torch.Tensor): return result return None class LightningDataParallel(DataParallel): """ Override the forward call in lightning so it goes to training and validation step respectively """ def forward(self, *inputs, **kwargs): if not self.device_ids: return self.module(*inputs, **kwargs) for t in chain(self.module.parameters(), self.module.buffers()): if t.device != self.src_device_obj: raise RuntimeError("module must have its parameters and buffers " "on device {} (device_ids[0]) but found one of " "them on device: {}".format(self.src_device_obj, t.device)) inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids) if len(self.device_ids) == 1: # lightning if self.module.training: return self.module.training_step(*inputs[0], **kwargs[0]) if self.module.testing: return self.module.test_step(*inputs[0], **kwargs[0]) return self.module.validation_step(*inputs[0], **kwargs[0]) replicas = self.replicate(self.module, self.device_ids[:len(inputs)]) outputs = self.parallel_apply(replicas, inputs, kwargs) return self.gather(outputs, self.output_device) def parallel_apply(self, replicas, inputs, kwargs): return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)]) class LightningDistributedDataParallel(DistributedDataParallel): """ Override the forward call in lightning so it goes to training and validation step respectively """ def parallel_apply(self, replicas, inputs, kwargs): return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)]) def forward(self, *inputs, **kwargs): # pragma: no cover self._sync_params() if self.device_ids: inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids) if len(self.device_ids) == 1: # -------------- # LIGHTNING MOD # -------------- # normal # output = self.module(*inputs[0], **kwargs[0]) # lightning if self.module.training: output = self.module.training_step(*inputs[0], **kwargs[0]) elif self.module.testing: output = self.module.test_step(*inputs[0], **kwargs[0]) else: output = self.module.validation_step(*inputs[0], **kwargs[0]) else: outputs = self.parallel_apply(self._module_copies[:len(inputs)], inputs, kwargs) output = self.gather(outputs, self.output_device) else: # normal output = self.module(*inputs, **kwargs) if torch.is_grad_enabled(): # We'll return the output object verbatim since it is a freeform # object. We need to find any tensors in this object, though, # because we need to figure out which parameters were used during # this forward pass, to ensure we short circuit reduction for any # unused parameters. Only if `find_unused_parameters` is set. if self.find_unused_parameters: self.reducer.prepare_for_backward(list(_find_tensors(output))) else: self.reducer.prepare_for_backward([]) return output def parallel_apply(modules, inputs, kwargs_tup=None, devices=None): # pragma: no cover r"""Applies each `module` in :attr:`modules` in parallel on arguments contained in :attr:`inputs` (positional) and :attr:`kwargs_tup` (keyword) on each of :attr:`devices`. Args: modules (Module): modules to be parallelized inputs (tensor): inputs to the modules devices (list of int or torch.device): CUDA devices :attr:`modules`, :attr:`inputs`, :attr:`kwargs_tup` (if given), and :attr:`devices` (if given) should all have same length. Moreover, each element of :attr:`inputs` can either be a single object as the only argument to a module, or a collection of positional arguments. """ assert len(modules) == len(inputs) if kwargs_tup is not None: assert len(modules) == len(kwargs_tup) else: kwargs_tup = ({},) * len(modules) if devices is not None: assert len(modules) == len(devices) else: devices = [None] * len(modules) devices = list(map(lambda x: _get_device_index(x, True), devices)) lock = threading.Lock() results = {} grad_enabled = torch.is_grad_enabled() def _worker(i, module, input, kwargs, device=None): torch.set_grad_enabled(grad_enabled) if device is None: device = get_a_var(input).get_device() try: with torch.cuda.device(device): # this also avoids accidental slicing of `input` if it is a Tensor if not isinstance(input, (list, tuple)): input = (input,) # --------------- # CHANGE if module.training: output = module.training_step(*input, **kwargs) elif module.testing: output = module.test_step(*input, **kwargs) else: output = module.validation_step(*input, **kwargs) # --------------- with lock: results[i] = output except Exception as e: with lock: results[i] = e # TODO: fix hack (maybe not a hack) # make sure each module knows what training state it's in... # fixes weird bug where copies are out of sync root_m = modules[0] for m in modules[1:]: m.training = root_m.training m.testing = root_m.testing if len(modules) > 1: threads = [threading.Thread(target=_worker, args=(i, module, input, kwargs, device)) for i, (module, input, kwargs, device) in enumerate(zip(modules, inputs, kwargs_tup, devices))] for thread in threads: thread.start() for thread in threads: thread.join() else: _worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0]) outputs = [] for i in range(len(inputs)): output = results[i] if isinstance(output, Exception): raise output outputs.append(output) return outputs