# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from pprint import pprint import torch from torch.nn import functional as F import pytorch_lightning as pl from pl_examples import cli_lightning_logo from pl_examples.basic_examples.mnist_datamodule import MNISTDataModule class LitClassifier(pl.LightningModule): """ >>> LitClassifier() # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE LitClassifier( (l1): Linear(...) (l2): Linear(...) ) """ def __init__(self, hidden_dim=128, learning_rate=1e-3): super().__init__() self.save_hyperparameters() self.l1 = torch.nn.Linear(28 * 28, self.hparams.hidden_dim) self.l2 = torch.nn.Linear(self.hparams.hidden_dim, 10) def forward(self, x): x = x.view(x.size(0), -1) x = torch.relu(self.l1(x)) x = torch.relu(self.l2(x)) return x def training_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) return loss def validation_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) self.log('valid_loss', loss) def test_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) self.log('test_loss', loss) def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate) @staticmethod def add_model_specific_args(parent_parser): parser = ArgumentParser(parents=[parent_parser], add_help=False) parser.add_argument('--hidden_dim', type=int, default=128) parser.add_argument('--learning_rate', type=float, default=0.0001) return parser def cli_main(): pl.seed_everything(1234) # ------------ # args # ------------ parser = ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) parser = LitClassifier.add_model_specific_args(parser) parser = MNISTDataModule.add_argparse_args(parser) args = parser.parse_args() # ------------ # data # ------------ dm = MNISTDataModule.from_argparse_args(args) # ------------ # model # ------------ model = LitClassifier(args.hidden_dim, args.learning_rate) # ------------ # training # ------------ trainer = pl.Trainer.from_argparse_args(args) trainer.fit(model, datamodule=dm) # ------------ # testing # ------------ # todo: without passing model it fails for missing best weights # MisconfigurationException, 'ckpt_path is "best", but ModelCheckpoint is not configured to save the best model.' result = trainer.test(model, datamodule=dm) pprint(result) if __name__ == '__main__': cli_lightning_logo() cli_main()