# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Any, Callable, Generator, Sequence, Tuple, Union import torch import torch.nn as nn from torch.optim import Optimizer import pytorch_lightning as pl from pytorch_lightning.plugins.base_plugin import Plugin from pytorch_lightning.utilities import GradClipAlgorithmType class PrecisionPlugin(Plugin): """ Base class for all plugins handling the precision-specific parts of the training. The static classattributes EPSILON and precision must be overwritten in child-classes and their default values reflect fp32 training. """ EPSILON: float = 1e-6 precision: Union[str, int] = 32 def __init__(self) -> None: super().__init__() self.clip_grad_funcs = { GradClipAlgorithmType.VALUE: self.clip_grad_by_value, GradClipAlgorithmType.NORM: self.clip_grad_by_norm, } def master_params(self, optimizer: Optimizer) -> Generator[torch.Tensor, None, None]: """The master params of the model. Returns the plain model params here. Maybe different in other precision plugins. """ for group in optimizer.param_groups: for p in group["params"]: yield p def connect( self, model: nn.Module, optimizers: Sequence[Optimizer], lr_schedulers: Sequence[Any], ) -> Tuple[nn.Module, Sequence[Optimizer], Sequence[Any]]: """Connects this plugin to the accelerator and the training process""" return model, optimizers, lr_schedulers def backward( self, model: 'pl.LightningModule', closure_loss: torch.Tensor, optimizer: Optimizer, opt_idx: int, should_accumulate: bool, *args: Any, **kwargs: Any, ) -> torch.Tensor: """performs the actual backpropagation Args: model: the model to be optimized closure_loss: the loss value obtained from the closure optimizer: the optimizer to perform the step lateron opt_idx: the optimizer's index should_accumulate: whether to accumulate gradients or not """ automatic_optimization = model.automatic_optimization # do backward pass if automatic_optimization: model.backward(closure_loss, optimizer, opt_idx) else: closure_loss.backward(*args, **kwargs) # once backward has been applied, release graph closure_loss = closure_loss.detach() return closure_loss def pre_optimizer_step( self, pl_module: 'pl.LightningModule', optimizer: Optimizer, optimizer_idx: int, lambda_closure: Callable, **kwargs: Any, ) -> bool: """Hook to do something before each optimizer step.""" return True def post_optimizer_step(self, optimizer: Optimizer, optimizer_idx: int) -> None: """Hook to do something after each optimizer step.""" def clip_gradients( self, model: 'pl.LightningModule', optimizer: Optimizer, clip_val: Union[int, float], gradient_clip_algorithm: GradClipAlgorithmType = GradClipAlgorithmType.NORM, ) -> None: """Clips the gradients""" if clip_val is None: return clip_val = float(clip_val) if clip_val <= 0: return clip_grad_func = self.clip_grad_funcs[gradient_clip_algorithm] clip_grad_func(optimizer, clip_val) # type: ignore def clip_grad_by_value(self, optimizer: Optimizer, clip_val: Union[int, float]) -> None: """Clip gradients by value""" parameters = list(self.master_params(optimizer)) torch.nn.utils.clip_grad_value_(parameters, clip_value=clip_val) def clip_grad_by_norm(self, optimizer: Optimizer, clip_val: Union[int, float], norm_type: float = 2.0) -> None: """Clip gradients by norm""" # TODO: separate TPU case from here parameters = list(self.master_params(optimizer)) max_norm = clip_val if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = list(filter(lambda p: p.grad is not None, parameters)) device = parameters[0].device if norm_type == math.inf: total_norm = max(p.grad.data.abs().max() for p in parameters) else: out = torch.empty(len(parameters), device=device) for i, p in enumerate(parameters): torch.norm(p.grad.data.to(device), norm_type, out=out[i]) total_norm = torch.norm(out, norm_type) eps = self.EPSILON clip_coef = torch.tensor(max_norm, device=device) / (total_norm + eps) clip_coef = torch.min(clip_coef, torch.ones_like(clip_coef)) for p in parameters: p.grad.data.mul_(clip_coef.to(p.grad.data.device))