# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Profiler to check if there are any bottlenecks in your code.""" import logging import os from abc import ABC, abstractmethod from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) class AbstractProfiler(ABC): """Specification of a profiler.""" @abstractmethod def start(self, action_name: str) -> None: """Defines how to start recording an action.""" @abstractmethod def stop(self, action_name: str) -> None: """Defines how to record the duration once an action is complete.""" @abstractmethod def summary(self) -> str: """Create profiler summary in text format.""" @abstractmethod def setup(self, **kwargs: Any) -> None: """Execute arbitrary pre-profiling set-up steps as defined by subclass.""" @abstractmethod def teardown(self, **kwargs: Any) -> None: """Execute arbitrary post-profiling tear-down steps as defined by subclass.""" class BaseProfiler(AbstractProfiler): """ If you wish to write a custom profiler, you should inherit from this class. """ def __init__( self, dirpath: Optional[Union[str, Path]] = None, filename: Optional[str] = None, ) -> None: self.dirpath = dirpath self.filename = filename self._output_file: Optional[TextIO] = None self._write_stream: Optional[Callable] = None self._local_rank: Optional[int] = None self._log_dir: Optional[str] = None self._stage: Optional[str] = None @contextmanager def profile(self, action_name: str) -> Generator: """ Yields a context manager to encapsulate the scope of a profiled action. Example:: with self.profile('load training data'): # load training data code The profiler will start once you've entered the context and will automatically stop once you exit the code block. """ try: self.start(action_name) yield action_name finally: self.stop(action_name) def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator: iterator = iter(iterable) while True: try: self.start(action_name) value = next(iterator) self.stop(action_name) yield value except StopIteration: self.stop(action_name) break def _rank_zero_info(self, *args, **kwargs) -> None: if self._local_rank in (None, 0): log.info(*args, **kwargs) def _prepare_filename( self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-" ) -> str: args = [] if self._stage is not None: args.append(self._stage) if self.filename: args.append(self.filename) if self._local_rank is not None: args.append(str(self._local_rank)) if action_name is not None: args.append(action_name) filename = split_token.join(args) + extension return filename def _prepare_streams(self) -> None: if self._write_stream is not None: return if self.filename: filepath = os.path.join(self.dirpath, self._prepare_filename()) fs = get_filesystem(filepath) file = fs.open(filepath, "a") self._output_file = file self._write_stream = file.write else: self._write_stream = self._rank_zero_info def describe(self) -> None: """Logs a profile report after the conclusion of run.""" # there are pickling issues with open file handles in Python 3.6 # so to avoid them, we open and close the files within this function # by calling `_prepare_streams` and `teardown` self._prepare_streams() summary = self.summary() if summary: self._write_stream(summary) if self._output_file is not None: self._output_file.flush() self.teardown(stage=self._stage) def _stats_to_str(self, stats: Dict[str, str]) -> str: stage = f"{self._stage.upper()} " if self._stage is not None else "" output = [stage + "Profiler Report"] for action, value in stats.items(): header = f"Profile stats for: {action}" if self._local_rank is not None: header += f" rank: {self._local_rank}" output.append(header) output.append(value) return os.linesep.join(output) def setup( self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None ) -> None: """Execute arbitrary pre-profiling set-up steps.""" self._stage = stage self._local_rank = local_rank self._log_dir = log_dir self.dirpath = self.dirpath or log_dir def teardown(self, stage: Optional[str] = None) -> None: """ Execute arbitrary post-profiling tear-down steps. Closes the currently open file and stream. """ self._write_stream = None if self._output_file is not None: self._output_file.close() self._output_file = None # can't pickle TextIOWrapper def __del__(self) -> None: self.teardown(stage=self._stage) def start(self, action_name: str) -> None: raise NotImplementedError def stop(self, action_name: str) -> None: raise NotImplementedError def summary(self) -> str: raise NotImplementedError @property def local_rank(self) -> int: return 0 if self._local_rank is None else self._local_rank class PassThroughProfiler(BaseProfiler): """ This class should be used when you don't want the (small) overhead of profiling. The Trainer uses this class by default. """ def start(self, action_name: str) -> None: pass def stop(self, action_name: str) -> None: pass def summary(self) -> str: return ""