# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorBoard Logger ------------------ """ import logging import os from argparse import Namespace from typing import Any, Dict, Optional, Union import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from torch.utils.tensorboard.summary import hparams import pytorch_lightning as pl from pytorch_lightning.core.saving import save_hparams_to_yaml from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment from pytorch_lightning.utilities import _OMEGACONF_AVAILABLE, rank_zero_only, rank_zero_warn from pytorch_lightning.utilities.cloud_io import get_filesystem log = logging.getLogger(__name__) if _OMEGACONF_AVAILABLE: from omegaconf import Container, OmegaConf class TensorBoardLogger(LightningLoggerBase): r""" Log to local file system in `TensorBoard `_ format. Implemented using :class:`~torch.utils.tensorboard.SummaryWriter`. Logs are saved to ``os.path.join(save_dir, name, version)``. This is the default logger in Lightning, it comes preinstalled. Example: .. testcode:: from pytorch_lightning import Trainer from pytorch_lightning.loggers import TensorBoardLogger logger = TensorBoardLogger("tb_logs", name="my_model") trainer = Trainer(logger=logger) Args: save_dir: Save directory name: Experiment name. Defaults to ``'default'``. If it is the empty string then no per-experiment subdirectory is used. version: Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. If it is a string then it is used as the run-specific subdirectory name, otherwise ``'version_${version}'`` is used. sub_dir: Sub-directory to group TensorBoard logs. If a sub_dir argument is passed then logs are saved in ``/save_dir/version/sub_dir/``. Defaults to ``None`` in which logs are saved in ``/save_dir/version/``. log_graph: Adds the computational graph to tensorboard. This requires that the user has defined the `self.example_input_array` attribute in their model. default_hp_metric: Enables a placeholder metric with key `hp_metric` when `log_hyperparams` is called without a metric (otherwise calls to log_hyperparams without a metric are ignored). prefix: A string to put at the beginning of metric keys. \**kwargs: Additional arguments like `comment`, `filename_suffix`, etc. used by :class:`SummaryWriter` can be passed as keyword arguments in this logger. """ NAME_HPARAMS_FILE = "hparams.yaml" LOGGER_JOIN_CHAR = "-" def __init__( self, save_dir: str, name: Optional[str] = "default", version: Optional[Union[int, str]] = None, log_graph: bool = False, default_hp_metric: bool = True, prefix: str = "", sub_dir: Optional[str] = None, **kwargs, ): super().__init__() self._save_dir = save_dir self._name = name or "" self._version = version self._sub_dir = sub_dir self._log_graph = log_graph self._default_hp_metric = default_hp_metric self._prefix = prefix self._fs = get_filesystem(save_dir) self._experiment = None self.hparams = {} self._kwargs = kwargs @property def root_dir(self) -> str: """ Parent directory for all tensorboard checkpoint subdirectories. If the experiment name parameter is ``None`` or the empty string, no experiment subdirectory is used and the checkpoint will be saved in "save_dir/version_dir" """ if self.name is None or len(self.name) == 0: return self.save_dir return os.path.join(self.save_dir, self.name) @property def log_dir(self) -> str: """ The directory for this run's tensorboard checkpoint. By default, it is named ``'version_${self.version}'`` but it can be overridden by passing a string value for the constructor's version parameter instead of ``None`` or an int. """ # create a pseudo standard path ala test-tube version = self.version if isinstance(self.version, str) else f"version_{self.version}" log_dir = os.path.join(self.root_dir, version) if isinstance(self.sub_dir, str): log_dir = os.path.join(log_dir, self.sub_dir) log_dir = os.path.expandvars(log_dir) log_dir = os.path.expanduser(log_dir) return log_dir @property def save_dir(self) -> Optional[str]: """ Gets the save directory where the TensorBoard experiments are saved. Returns: The local path to the save directory where the TensorBoard experiments are saved. """ return self._save_dir @property def sub_dir(self) -> Optional[str]: """ Gets the sub directory where the TensorBoard experiments are saved. Returns: The local path to the sub directory where the TensorBoard experiments are saved. """ return self._sub_dir @property @rank_zero_experiment def experiment(self) -> SummaryWriter: r""" Actual tensorboard object. To use TensorBoard features in your :class:`~pytorch_lightning.core.lightning.LightningModule` do the following. Example:: self.logger.experiment.some_tensorboard_function() """ if self._experiment is not None: return self._experiment assert rank_zero_only.rank == 0, "tried to init log dirs in non global_rank=0" if self.root_dir: self._fs.makedirs(self.root_dir, exist_ok=True) self._experiment = SummaryWriter(log_dir=self.log_dir, **self._kwargs) return self._experiment @rank_zero_only def log_hyperparams( self, params: Union[Dict[str, Any], Namespace], metrics: Optional[Dict[str, Any]] = None ) -> None: """ Record hyperparameters. TensorBoard logs with and without saved hyperparameters are incompatible, the hyperparameters are then not displayed in the TensorBoard. Please delete or move the previously saved logs to display the new ones with hyperparameters. Args: params: a dictionary-like container with the hyperparameters metrics: Dictionary with metric names as keys and measured quantities as values """ params = self._convert_params(params) # store params to output if _OMEGACONF_AVAILABLE and isinstance(params, Container): self.hparams = OmegaConf.merge(self.hparams, params) else: self.hparams.update(params) # format params into the suitable for tensorboard params = self._flatten_dict(params) params = self._sanitize_params(params) if metrics is None: if self._default_hp_metric: metrics = {"hp_metric": -1} elif not isinstance(metrics, dict): metrics = {"hp_metric": metrics} if metrics: self.log_metrics(metrics, 0) exp, ssi, sei = hparams(params, metrics) writer = self.experiment._get_file_writer() writer.add_summary(exp) writer.add_summary(ssi) writer.add_summary(sei) @rank_zero_only def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None: assert rank_zero_only.rank == 0, "experiment tried to log from global_rank != 0" metrics = self._add_prefix(metrics) for k, v in metrics.items(): if isinstance(v, torch.Tensor): v = v.item() if isinstance(v, dict): self.experiment.add_scalars(k, v, step) else: try: self.experiment.add_scalar(k, v, step) # todo: specify the possible exception except Exception as ex: m = f"\n you tried to log {v} which is not currently supported. Try a dict or a scalar/tensor." raise ValueError(m) from ex @rank_zero_only def log_graph(self, model: "pl.LightningModule", input_array=None): if self._log_graph: if input_array is None: input_array = model.example_input_array if input_array is not None: input_array = model._apply_batch_transfer_handler(input_array) self.experiment.add_graph(model, input_array) else: rank_zero_warn( "Could not log computational graph since the" " `model.example_input_array` attribute is not set" " or `input_array` was not given", UserWarning, ) @rank_zero_only def save(self) -> None: super().save() dir_path = self.log_dir # prepare the file path hparams_file = os.path.join(dir_path, self.NAME_HPARAMS_FILE) # save the metatags file if it doesn't exist and the log directory exists if self._fs.isdir(dir_path) and not self._fs.isfile(hparams_file): save_hparams_to_yaml(hparams_file, self.hparams) @rank_zero_only def finalize(self, status: str) -> None: self.experiment.flush() self.experiment.close() self.save() @property def name(self) -> str: """ Get the name of the experiment. Returns: The name of the experiment. """ return self._name @property def version(self) -> int: """ Get the experiment version. Returns: The experiment version if specified else the next version. """ if self._version is None: self._version = self._get_next_version() return self._version def _get_next_version(self): root_dir = self.root_dir try: listdir_info = self._fs.listdir(root_dir) except OSError: log.warning("Missing logger folder: %s", root_dir) return 0 existing_versions = [] for listing in listdir_info: d = listing["name"] bn = os.path.basename(d) if self._fs.isdir(d) and bn.startswith("version_"): dir_ver = bn.split("_")[1].replace("/", "") existing_versions.append(int(dir_ver)) if len(existing_versions) == 0: return 0 return max(existing_versions) + 1 @staticmethod def _sanitize_params(params: Dict[str, Any]) -> Dict[str, Any]: params = LightningLoggerBase._sanitize_params(params) # logging of arrays with dimension > 1 is not supported, sanitize as string return {k: str(v) if isinstance(v, (torch.Tensor, np.ndarray)) and v.ndim > 1 else v for k, v in params.items()} def __getstate__(self): state = self.__dict__.copy() state["_experiment"] = None return state