# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MLflow Logger ------------- """ import logging import os import re from argparse import Namespace from time import time from typing import Any, Dict, Optional, Union from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment from pytorch_lightning.utilities import _module_available, rank_zero_only, rank_zero_warn log = logging.getLogger(__name__) LOCAL_FILE_URI_PREFIX = "file:" _MLFLOW_AVAILABLE = _module_available("mlflow") try: import mlflow from mlflow.tracking import context, MlflowClient from mlflow.utils.mlflow_tags import MLFLOW_RUN_NAME # todo: there seems to be still some remaining import error with Conda env except ImportError: _MLFLOW_AVAILABLE = False mlflow, MlflowClient, context = None, None, None MLFLOW_RUN_NAME = "mlflow.runName" # before v1.1.0 if hasattr(context, "resolve_tags"): from mlflow.tracking.context import resolve_tags # since v1.1.0 elif hasattr(context, "registry"): from mlflow.tracking.context.registry import resolve_tags else: def resolve_tags(tags=None): return tags class MLFlowLogger(LightningLoggerBase): """ Log using `MLflow `_. Install it with pip: .. code-block:: bash pip install mlflow .. code-block:: python from pytorch_lightning import Trainer from pytorch_lightning.loggers import MLFlowLogger mlf_logger = MLFlowLogger(experiment_name="default", tracking_uri="file:./ml-runs") trainer = Trainer(logger=mlf_logger) Use the logger anywhere in your :class:`~pytorch_lightning.core.lightning.LightningModule` as follows: .. code-block:: python from pytorch_lightning import LightningModule class LitModel(LightningModule): def training_step(self, batch, batch_idx): # example self.logger.experiment.whatever_ml_flow_supports(...) def any_lightning_module_function_or_hook(self): self.logger.experiment.whatever_ml_flow_supports(...) Args: experiment_name: The name of the experiment run_name: Name of the new run. The `run_name` is internally stored as a ``mlflow.runName`` tag. If the ``mlflow.runName`` tag has already been set in `tags`, the value is overridden by the `run_name`. tracking_uri: Address of local or remote tracking server. If not provided, defaults to `MLFLOW_TRACKING_URI` environment variable if set, otherwise it falls back to `file:`. tags: A dictionary tags for the experiment. save_dir: A path to a local directory where the MLflow runs get saved. Defaults to `./mlflow` if `tracking_uri` is not provided. Has no effect if `tracking_uri` is provided. prefix: A string to put at the beginning of metric keys. artifact_location: The location to store run artifacts. If not provided, the server picks an appropriate default. Raises: ImportError: If required MLFlow package is not installed on the device. """ LOGGER_JOIN_CHAR = "-" def __init__( self, experiment_name: str = "default", run_name: Optional[str] = None, tracking_uri: Optional[str] = os.getenv("MLFLOW_TRACKING_URI"), tags: Optional[Dict[str, Any]] = None, save_dir: Optional[str] = "./mlruns", prefix: str = "", artifact_location: Optional[str] = None, ): if mlflow is None: raise ImportError( "You want to use `mlflow` logger which is not installed yet, install it with `pip install mlflow`." ) super().__init__() if not tracking_uri: tracking_uri = f"{LOCAL_FILE_URI_PREFIX}{save_dir}" self._experiment_name = experiment_name self._experiment_id = None self._tracking_uri = tracking_uri self._run_name = run_name self._run_id = None self.tags = tags self._prefix = prefix self._artifact_location = artifact_location self._mlflow_client = MlflowClient(tracking_uri) @property @rank_zero_experiment def experiment(self) -> MlflowClient: r""" Actual MLflow object. To use MLflow features in your :class:`~pytorch_lightning.core.lightning.LightningModule` do the following. Example:: self.logger.experiment.some_mlflow_function() """ if self._experiment_id is None: expt = self._mlflow_client.get_experiment_by_name(self._experiment_name) if expt is not None: self._experiment_id = expt.experiment_id else: log.warning(f"Experiment with name {self._experiment_name} not found. Creating it.") self._experiment_id = self._mlflow_client.create_experiment( name=self._experiment_name, artifact_location=self._artifact_location ) if self._run_id is None: if self._run_name is not None: self.tags = self.tags or {} if MLFLOW_RUN_NAME in self.tags: log.warning( f"The tag {MLFLOW_RUN_NAME} is found in tags. The value will be overridden by {self._run_name}." ) self.tags[MLFLOW_RUN_NAME] = self._run_name run = self._mlflow_client.create_run(experiment_id=self._experiment_id, tags=resolve_tags(self.tags)) self._run_id = run.info.run_id return self._mlflow_client @property def run_id(self) -> str: """ Create the experiment if it does not exist to get the run id. Returns: The run id. """ _ = self.experiment return self._run_id @property def experiment_id(self) -> str: """ Create the experiment if it does not exist to get the experiment id. Returns: The experiment id. """ _ = self.experiment return self._experiment_id @rank_zero_only def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None: params = self._convert_params(params) params = self._flatten_dict(params) for k, v in params.items(): if len(str(v)) > 250: rank_zero_warn( f"Mlflow only allows parameters with up to 250 characters. Discard {k}={v}", RuntimeWarning ) continue self.experiment.log_param(self.run_id, k, v) @rank_zero_only def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None: assert rank_zero_only.rank == 0, "experiment tried to log from global_rank != 0" metrics = self._add_prefix(metrics) timestamp_ms = int(time() * 1000) for k, v in metrics.items(): if isinstance(v, str): log.warning(f"Discarding metric with string value {k}={v}.") continue new_k = re.sub("[^a-zA-Z0-9_/. -]+", "", k) if k != new_k: rank_zero_warn( "MLFlow only allows '_', '/', '.' and ' ' special characters in metric name." f" Replacing {k} with {new_k}.", RuntimeWarning, ) k = new_k self.experiment.log_metric(self.run_id, k, v, timestamp_ms, step) @rank_zero_only def finalize(self, status: str = "FINISHED") -> None: super().finalize(status) status = "FINISHED" if status == "success" else status if self.experiment.get_run(self.run_id): self.experiment.set_terminated(self.run_id, status) @property def save_dir(self) -> Optional[str]: """ The root file directory in which MLflow experiments are saved. Return: Local path to the root experiment directory if the tracking uri is local. Otherwhise returns `None`. """ if self._tracking_uri.startswith(LOCAL_FILE_URI_PREFIX): return self._tracking_uri.lstrip(LOCAL_FILE_URI_PREFIX) @property def name(self) -> str: """ Get the experiment id. Returns: The experiment id. """ return self.experiment_id @property def version(self) -> str: """ Get the run id. Returns: The run id. """ return self.run_id