# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import os import re from contextlib import contextmanager from typing import Optional, Type import pytest from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.demos.boring_classes import BoringModel from pytorch_lightning.loggers import TensorBoardLogger from tests_pytorch import _TEMP_PATH def get_default_logger(save_dir, version=None): # set up logger object without actually saving logs logger = TensorBoardLogger(save_dir, name="lightning_logs", version=version) return logger def get_data_path(expt_logger, path_dir=None): # some calls contain only experiment not complete logger # each logger has to have these attributes name, version = expt_logger.name, expt_logger.version # the other experiments... if not path_dir: if hasattr(expt_logger, "save_dir") and expt_logger.save_dir: path_dir = expt_logger.save_dir else: path_dir = _TEMP_PATH path_expt = os.path.join(path_dir, name, "version_%s" % version) # try if the new sub-folder exists, typical case for test-tube if not os.path.isdir(path_expt): path_expt = path_dir return path_expt def load_model_from_checkpoint(root_weights_dir, module_class=BoringModel): trained_model = module_class.load_from_checkpoint(root_weights_dir) assert trained_model is not None, "loading model failed" return trained_model def assert_ok_model_acc(trainer, key="test_acc", thr=0.5): # this model should get 0.80+ acc acc = trainer.callback_metrics[key] assert acc > thr, f"Model failed to get expected {thr} accuracy. {key} = {acc}" def init_checkpoint_callback(logger): checkpoint = ModelCheckpoint(dirpath=logger.save_dir) return checkpoint def getattr_recursive(obj, attr): return functools.reduce(getattr, [obj] + attr.split(".")) @contextmanager def no_warning_call(expected_warning: Type[Warning] = UserWarning, match: Optional[str] = None): with pytest.warns(None) as record: yield if match is None: try: w = record.pop(expected_warning) except AssertionError: # no warning raised return else: for w in record.list: if w.category is expected_warning and re.compile(match).search(w.message.args[0]): break else: return msg = "A warning" if expected_warning is None else f"`{expected_warning.__name__}`" raise AssertionError(f"{msg} was raised: {w}")