# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import deepcopy from functools import partial from typing import Any, Callable, Dict, List, Optional, Tuple import torch from torch import Tensor from torch.optim import Optimizer from pytorch_lightning.core.optimizer import LightningOptimizer from pytorch_lightning.loops import Loop from pytorch_lightning.loops.closure import Closure, ClosureResult from pytorch_lightning.loops.utilities import ( _block_parallel_sync_behavior, _build_training_step_kwargs, _check_training_step_output, _process_training_step_output, ) from pytorch_lightning.trainer.connectors.logger_connector.result import ResultCollection from pytorch_lightning.trainer.progress import OptimizationProgress from pytorch_lightning.utilities import AMPType, AttributeDict, DeviceType, grad_norm from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.finite_checks import detect_nan_parameters from pytorch_lightning.utilities.imports import _TPU_AVAILABLE _OUTPUTS_TYPE = List[List[Optional[ResultCollection]]] class OptimizerLoop(Loop): """Runs over a sequence of optimizers. This loop implements what is known in Lightning as Automatic Optimization. """ def __init__(self): super().__init__() # TODO: use default dict here to simplify logic in loop self.outputs: _OUTPUTS_TYPE = [] self.optim_progress: OptimizationProgress = OptimizationProgress() self._skip_backward: bool = False self._batch_idx: int = 0 self._optimizers: List[Optimizer] = [] self._hiddens: Optional[Any] = None @property def done(self) -> bool: """Returns ``True`` when the last optimizer in the sequence has run.""" return self.optim_progress.optimizer_idx >= len(self._optimizers) def connect(self, **kwargs: "Loop") -> None: raise NotImplementedError(f"{self.__class__.__name__} does not connect any child loops.") def reset(self) -> None: if not self.restarting: self.optim_progress.optimizer_idx = 0 self.outputs = [[] for _ in range(len(self.trainer.optimizers))] def on_run_start( # type: ignore[override] self, batch: Any, hiddens: Any, optimizers: List[Optimizer], batch_idx: int ) -> None: self._batch_idx = batch_idx self._optimizers = optimizers def advance(self, batch: Any, hiddens: Any, *args, **kwargs) -> None: # type: ignore[override] self._hiddens = hiddens result = self._run_optimization( batch, self._batch_idx, self._optimizers[self.optim_progress.optimizer_idx], self.optim_progress.optimizer_idx, ) if result.result_collection is not None: self.outputs[self.optim_progress.optimizer_idx].append(deepcopy(result.result_collection)) self.optim_progress.optimizer_idx += 1 def on_run_end(self) -> Tuple[_OUTPUTS_TYPE, Optional[Any]]: outputs = self.outputs hiddens = self._hiddens # free memory self.outputs = [] self._hiddens = None return outputs, hiddens def backward( self, loss: Tensor, optimizer: torch.optim.Optimizer, opt_idx: int, *args: Any, **kwargs: Any, ) -> Tensor: """Performs the backward step. Args: loss: The loss value to back-propagate on optimizer: Current optimizer being used opt_idx: Index of the current optimizer being used """ self.trainer.accelerator.backward(loss, optimizer, opt_idx, *args, **kwargs) if not self.trainer.fit_loop.should_accumulate(): # track gradients grad_norm_dict = self._track_and_norm_grad(optimizer=optimizer) if grad_norm_dict: self.trainer.lightning_module._current_fx_name = "on_after_backward" self.trainer.lightning_module.log_grad_norm(grad_norm_dict) return loss def _run_optimization( self, split_batch: Any, batch_idx: int, optimizer: torch.optim.Optimizer, opt_idx: int, ) -> ClosureResult: """Runs closure (train step + backward) together with optimization if necessary. Args: split_batch: the current tbptt split of the whole batch batch_idx: the index of the current batch optimizer: the current optimizer opt_idx: the index of the current optimizer """ # toggle model params self._run_optimization_start(opt_idx, optimizer) closure = self._make_closure(split_batch, batch_idx, opt_idx, optimizer, self._hiddens) if self.trainer.fit_loop.should_accumulate(): # For gradient accumulation # ------------------- # calculate loss (train step + train step end) # ------------------- # automatic_optimization=True: perform ddp sync only when performing optimizer_step with _block_parallel_sync_behavior(self.trainer, block=True): closure() # ------------------------------ # BACKWARD PASS # ------------------------------ # gradient update with accumulated gradients else: self._optimizer_step(optimizer, opt_idx, batch_idx, closure) result = closure.consume_result() if result.loss is not None: # if no result, user decided to skip optimization # otherwise update running loss + reset accumulated loss # TODO: find proper way to handle updating running loss assert self.trainer.fit_loop is not None assert self.trainer.fit_loop.epoch_loop is not None assert self.trainer.fit_loop.epoch_loop.batch_loop is not None self.trainer.fit_loop.epoch_loop.batch_loop._update_running_loss(result.loss) # untoggle model params self._run_optimization_end(opt_idx) return result def _make_closure( self, split_batch: Any, batch_idx: int, opt_idx: int, optimizer: Optimizer, hiddens: Any, ) -> Closure: """Build a closure object that captures the given arguments and runs the `training_step` function and optionally other functions such as `backward` and `zero_grad`.""" step_fn = self._make_step_fn(split_batch, batch_idx, opt_idx, hiddens) backward_fn = self._make_backward_fn(optimizer, opt_idx) zero_grad_fn = self._make_zero_grad_fn(batch_idx, opt_idx, optimizer) return Closure( step_fn=step_fn, backward_fn=backward_fn, zero_grad_fn=zero_grad_fn, profiler=self.trainer.profiler, ) def _make_step_fn( self, split_batch: Any, batch_idx: int, opt_idx: int, hiddens: Any ) -> Callable[[], Optional[AttributeDict]]: """Build the step function that runs the `training_step` and processes its output.""" return partial(self._training_step, split_batch, batch_idx, opt_idx, hiddens) def _make_zero_grad_fn(self, batch_idx: int, opt_idx: int, optimizer: Optimizer) -> Optional[Callable[[], None]]: """Build a `zero_grad` function that zeroes the gradients before back-propagation. Returns ``None`` in the case backward needs to be skipped. """ if self._skip_backward: return None is_first_batch_to_accumulate = batch_idx % self.trainer.accumulate_grad_batches == 0 if not is_first_batch_to_accumulate: return None def zero_grad_fn(): self._on_before_zero_grad(optimizer) self._optimizer_zero_grad(batch_idx, optimizer, opt_idx) return zero_grad_fn def _make_backward_fn( self, optimizer: Optimizer, opt_idx: int, ) -> Optional[Callable[[Tensor], Tensor]]: """Build a `backward` function that handles back-propagation through the output produced by the `training_step` function. Returns ``None`` in the case backward needs to be skipped. """ if self._skip_backward: return None def backward_fn(loss: Tensor): self.backward(loss, optimizer, opt_idx) # check if model weights are nan if self.trainer.terminate_on_nan: detect_nan_parameters(self.trainer.lightning_module) return loss return backward_fn def _run_optimization_start(self, opt_idx: int, optimizer: torch.optim.Optimizer) -> None: """Toggles the optimizer to ensure the correct one is used and prevend dangling grads. Args: opt_idx: the index of the optimizer to use optimizer: the optimizer to use """ # make sure only the gradients of the current optimizer's parameters are calculated # in the training step to prevent dangling gradients in multiple-optimizer setup. if len(self.trainer.optimizers) > 1: model = self.trainer.lightning_module model.toggle_optimizer(optimizer, opt_idx) def _run_optimization_end(self, opt_idx: int) -> None: if len(self.trainer.optimizers) > 1: model = self.trainer.lightning_module model.untoggle_optimizer(opt_idx) def _optimizer_step( self, optimizer: torch.optim.Optimizer, opt_idx: int, batch_idx: int, train_step_and_backward_closure: Callable ) -> None: """Performs the optimizer step and some sanity checking. Args: optimizer: the optimizer to perform the step with opt_idx: the index of the current :param:`optimizer` batch_idx: the index of the current batch train_step_and_backward_closure: the closure function performing the train step and computing the gradients. By default called by the optimizer (if possible) """ model_ref = self.trainer.lightning_module is_lbfgs = isinstance(optimizer, torch.optim.LBFGS) using_native_amp = self.trainer.amp_backend is not None and self.trainer.amp_backend == AMPType.NATIVE # native amp + lbfgs is a no go right now if using_native_amp and is_lbfgs: raise MisconfigurationException( "native PyTorch amp and lbfgs are not compatible." " To request, please file a Github issue in PyTorch and tag @mcarilli" ) # wraps into LightningOptimizer only for running step optimizer = LightningOptimizer._to_lightning_optimizer(optimizer, self.trainer, opt_idx) self.optim_progress.optimizer.step.increment_ready() # model hook model_ref.optimizer_step( self.trainer.current_epoch, batch_idx, optimizer, opt_idx, train_step_and_backward_closure, on_tpu=(self.trainer._device_type == DeviceType.TPU and _TPU_AVAILABLE), using_native_amp=using_native_amp, using_lbfgs=is_lbfgs, ) self.optim_progress.optimizer.step.increment_completed() def _on_before_zero_grad(self, optimizer: torch.optim.Optimizer) -> None: """Calls the ``on_before_zero_grad`` hook. Args: optimizer: the current optimizer """ self.optim_progress.optimizer.zero_grad.increment_ready() self.trainer.call_hook("on_before_zero_grad", optimizer) self.optim_progress.optimizer.zero_grad.increment_started() def _optimizer_zero_grad(self, batch_idx: int, optimizer: torch.optim.Optimizer, opt_idx: int) -> None: """Zeroes out all gradients of parameters optimized by the current optimizer. Args: batch_idx: the index of the current batch optimizer: the current optimizer opt_idx: the index of the current optimizer """ self.trainer.accelerator.optimizer_zero_grad(self.trainer.current_epoch, batch_idx, optimizer, opt_idx) self.optim_progress.optimizer.zero_grad.increment_completed() def _training_step( self, split_batch: Any, batch_idx: int, opt_idx: int, hiddens: Tensor ) -> Optional[AttributeDict]: """Performs the actual train step with the tied hooks. Args: split_batch: the current tbptt split of the current batch batch_idx: the index of the current batch opt_idx: the index of the current optimizer hiddens: the model's hidden state of the previous iteration Returns: an AttributeDict containing the loss value and the training step output. """ # give the PL module a result for logging model_ref = self.trainer.lightning_module with self.trainer.profiler.profile("model_forward"): step_kwargs = _build_training_step_kwargs( self.trainer.lightning_module, self.trainer.optimizers, split_batch, batch_idx, opt_idx, hiddens ) # manually capture logged metrics model_ref._current_fx_name = "training_step" with self.trainer.profiler.profile("training_step"): training_step_output = self.trainer.accelerator.training_step(step_kwargs) self.trainer.accelerator.post_training_step() del step_kwargs training_step_output = self.trainer.call_hook("training_step_end", training_step_output) _check_training_step_output(self.trainer.lightning_module, training_step_output) result_collection, self._hiddens = _process_training_step_output(self.trainer, training_step_output) if result_collection is None: return None # output validation already done, here loss can't be None assert result_collection.minimize is not None # accumulate loss. if accumulate_grad_batches==1, no effect closure_loss = result_collection.minimize / self.trainer.accumulate_grad_batches # the loss will get scaled for amp. avoid any modifications to it loss = closure_loss.detach().clone() return AttributeDict(closure_loss=closure_loss, loss=loss, result_collection=result_collection) def _track_and_norm_grad(self, optimizer: torch.optim.Optimizer) -> Dict[str, float]: """Tracks gradient norms and clips the gradients of all parameters optimized by the current optimizer. Args: optimizer: the current optimizer """ # track gradient norms grad_norm_dict = {} can_log = (self.trainer.global_step + 1) % self.trainer.log_every_n_steps == 0 should_track = float(self.trainer.track_grad_norm) > 0 if should_track and can_log: grad_norm_dict = grad_norm(self.trainer.lightning_module, self.trainer.track_grad_norm) # clip gradients self.trainer.accelerator.clip_gradients( optimizer, self.trainer.gradient_clip_val, gradient_clip_algorithm=self.trainer.gradient_clip_algorithm ) return grad_norm_dict