# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from unittest import mock import pytest import torch from torch.nn.parallel import DistributedDataParallel from pytorch_lightning import LightningModule, Trainer from pytorch_lightning.plugins import DDPPlugin from pytorch_lightning.plugins.environments import LightningEnvironment from pytorch_lightning.trainer.states import TrainerFn from tests.helpers.boring_model import BoringModel from tests.helpers.runif import RunIf class BoringModelGPU(BoringModel): def on_train_start(self) -> None: # make sure that the model is on GPU when training assert self.device == torch.device(f"cuda:{self.trainer.training_type_plugin.local_rank}") self.start_cuda_memory = torch.cuda.memory_allocated() @RunIf(skip_windows=True, min_gpus=2, special=True) def test_ddp_with_2_gpus(): """Tests if device is set correctely when training and after teardown for DDPPlugin.""" trainer = Trainer(gpus=2, strategy="ddp", fast_dev_run=True) # assert training type plugin attributes for device setting assert isinstance(trainer.training_type_plugin, DDPPlugin) assert trainer.training_type_plugin.on_gpu assert not trainer.training_type_plugin.on_tpu local_rank = trainer.training_type_plugin.local_rank assert trainer.training_type_plugin.root_device == torch.device(f"cuda:{local_rank}") model = BoringModelGPU() trainer.fit(model) # assert after training, model is moved to CPU and memory is deallocated assert model.device == torch.device("cpu") cuda_memory = torch.cuda.memory_allocated() assert cuda_memory < model.start_cuda_memory class BarrierModel(BoringModel): def setup(self, stage=None): assert not isinstance(self.trainer.accelerator.model, DistributedDataParallel) self.trainer.training_type_plugin.barrier("barrier before model is wrapped") def on_train_start(self): assert isinstance(self.trainer.accelerator.model, DistributedDataParallel) self.trainer.training_type_plugin.barrier("barrier after model is wrapped") @RunIf(min_gpus=4, special=True) @mock.patch("torch.distributed.barrier") def test_ddp_barrier_non_consecutive_device_ids(barrier_mock, tmpdir): """Test correct usage of barriers when device ids do not start at 0 or are not consecutive.""" model = BoringModel() gpus = [1, 3] trainer = Trainer(default_root_dir=tmpdir, max_steps=1, gpus=gpus, strategy="ddp") trainer.fit(model) barrier_mock.assert_any_call(device_ids=[gpus[trainer.local_rank]]) @mock.patch.dict(os.environ, {"LOCAL_RANK": "1"}) def test_incorrect_ddp_script_spawning(tmpdir): """Test an error message when user accidentally instructs Lightning to spawn children processes on rank > 0.""" class WronglyImplementedEnvironment(LightningEnvironment): def creates_children(self): # returning false no matter what means Lightning would spawn also on ranks > 0 new processes return False model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, strategy="ddp", num_processes=2, plugins=[WronglyImplementedEnvironment()], ) with pytest.raises( RuntimeError, match="Lightning attempted to launch new distributed processes with `local_rank > 0`." ): trainer.fit(model) @RunIf(skip_windows=True) def test_ddp_configure_ddp(): """Tests with ddp plugin.""" model = BoringModel() ddp_plugin = DDPPlugin() trainer = Trainer( max_epochs=1, strategy=ddp_plugin, ) # test wrap the model if fitting trainer.state.fn = TrainerFn.FITTING trainer.training_type_plugin.connect(model) trainer.accelerator.setup_environment() trainer.accelerator.setup(trainer) trainer.lightning_module.trainer = trainer assert isinstance(trainer.model, LightningModule) trainer._pre_dispatch() # in DDPPlugin configure_ddp(), model wrapped by DistributedDataParallel assert isinstance(trainer.model, DistributedDataParallel) trainer = Trainer( max_epochs=1, strategy=ddp_plugin, ) # test do not wrap the model if trainerFN is not fitting trainer.training_type_plugin.connect(model) trainer.accelerator.setup_environment() trainer.accelerator.setup(trainer) trainer.lightning_module.trainer = trainer trainer._pre_dispatch() # in DDPPlugin configure_ddp(), model are still LightningModule assert isinstance(trainer.model, LightningModule)