# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from functools import partial from unittest import mock from unittest.mock import ANY, MagicMock, Mock import pytest import torch from lightning.fabric.accelerators.xla import _XLA_GREATER_EQUAL_2_1, XLAAccelerator from lightning.fabric.strategies import XLAStrategy from lightning.fabric.strategies.launchers.xla import _XLALauncher from lightning.fabric.utilities.distributed import ReduceOp from torch.utils.data import DataLoader from tests_fabric.helpers.models import RandomDataset from tests_fabric.helpers.runif import RunIf def wrap_launch_function(fn, strategy, *args, **kwargs): # the launcher does not manage this automatically. explanation available in: # https://github.com/Lightning-AI/lightning/pull/14926#discussion_r982976718 strategy.setup_environment() return fn(*args, **kwargs) def xla_launch(fn, strategy=None): # TODO: the accelerator should be optional to just launch processes, but this requires lazy initialization if not strategy: accelerator = XLAAccelerator() strategy = XLAStrategy( accelerator=accelerator, parallel_devices=XLAAccelerator.get_parallel_devices(XLAAccelerator.auto_device_count()), ) launcher = _XLALauncher(strategy=strategy) wrapped = partial(wrap_launch_function, fn, strategy) return launcher.launch(wrapped, strategy) def broadcast_on_tpu_fn(strategy): # test broadcasting a tensor obj = torch.tensor(strategy.global_rank) assert obj.device.type == "cpu" # In PjRT, the local rank and global rank have no solid relation. # global rank may not even be contiguous on a host, because it depends on the 3D mesh structure that is formed by # the TPUs on all hosts in a pod. So checking a different src is not reliable # https://github.com/pytorch/xla/blob/v2.0.0/torch_xla/experimental/pjrt.py#L161-L163 src = 0 result = strategy.broadcast(obj, src) assert result.item() == src assert result.device.type == "cpu" # the original device is preserved # test broadcasting an arbitrary object tensor = torch.tensor(strategy.global_rank, device=strategy.root_device, dtype=torch.bfloat16) obj = ("ver_0.5", "logger_name", strategy.global_rank, tensor) result = strategy.broadcast(obj, src=src) assert result == ("ver_0.5", "logger_name", src, ANY) assert result[3].device.type == "xla" # the original device is preserved assert result[3].dtype == torch.bfloat16 @RunIf(tpu=True) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) def test_broadcast_on_tpu(): """Checks if an object from the main process is broadcast to other processes correctly.""" xla_launch(broadcast_on_tpu_fn) def tpu_reduce_fn(strategy): with pytest.raises(ValueError, match="XLAStrategy only supports"): strategy.all_reduce(1, reduce_op="undefined") with pytest.raises(ValueError, match="XLAStrategy only supports"): strategy.all_reduce(1, reduce_op=ReduceOp.MAX) # it is faster to loop over here than to parameterize the test for reduce_op in ("mean", "AVG", "sum", ReduceOp.SUM): result = strategy.all_reduce(1, reduce_op=reduce_op) if isinstance(reduce_op, str) and reduce_op.lower() in ("mean", "avg"): assert result.item() == 1 else: assert result.item() == 8 @RunIf(tpu=True) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) def test_tpu_reduce(): """Test tpu spawn all_reduce operation.""" xla_launch(tpu_reduce_fn) @RunIf(tpu=True) @mock.patch("lightning.fabric.strategies.xla.XLAStrategy.root_device") def test_xla_mp_device_dataloader_attribute(_, monkeypatch): dataset = RandomDataset(32, 64) dataloader = DataLoader(dataset) strategy = XLAStrategy() isinstance_return = True import torch_xla.distributed.parallel_loader as parallel_loader class MpDeviceLoaderMock(MagicMock): def __instancecheck__(self, instance): # to make `isinstance(dataloader, MpDeviceLoader)` pass with a mock as class return isinstance_return mp_loader_mock = MpDeviceLoaderMock() monkeypatch.setattr(parallel_loader, "MpDeviceLoader", mp_loader_mock) processed_dataloader = strategy.process_dataloader(dataloader) assert processed_dataloader is dataloader mp_loader_mock.assert_not_called() # no-op isinstance_return = False processed_dataloader = strategy.process_dataloader(dataloader) mp_loader_mock.assert_called_with(dataloader, strategy.root_device) assert processed_dataloader.dataset == processed_dataloader._loader.dataset assert processed_dataloader.batch_sampler == processed_dataloader._loader.batch_sampler def tpu_all_gather_fn(strategy): with pytest.raises(NotImplementedError, match="only implemented for tensors"): strategy.all_gather([1]) for sync_grads in (True, False): tensor = torch.tensor(1.0, requires_grad=True) result = strategy.all_gather(tensor, sync_grads=sync_grads) summed = result.sum() assert summed.device.type == "cpu" # the original device is preserved assert torch.equal(summed, torch.tensor(strategy.world_size, dtype=torch.float32)) if not _XLA_GREATER_EQUAL_2_1: summed.backward() if sync_grads: if _XLA_GREATER_EQUAL_2_1: # in 2.1, sync_grads=False makes it so that you cannot call .backward even if it originally had set # requires_grad=True summed.backward() assert torch.equal(tensor.grad, torch.tensor(1.0)) else: # As gradients are not synced, the original tensor will not have gradients. assert tensor.grad is None @RunIf(tpu=True) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) def test_tpu_all_gather(): """Test the all_gather operation on TPU.""" xla_launch(tpu_all_gather_fn) def tpu_sync_module_states_fn(sync_module_states, strategy): model = torch.nn.Linear(1, 1).to(strategy.root_device) model = strategy.setup_module(model) gathered = strategy.all_gather(model.weight) for t in gathered[1:]: if sync_module_states: assert torch.equal(gathered[0], t) else: assert not torch.equal(gathered[0], t) @RunIf(tpu=True) @pytest.mark.parametrize("sync_module_states", [True, False]) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) def test_tpu_sync_module_states(sync_module_states): """Test sync_module_states.""" accelerator = XLAAccelerator() strategy = XLAStrategy( accelerator=accelerator, parallel_devices=XLAAccelerator.get_parallel_devices(XLAAccelerator.auto_device_count()), sync_module_states=sync_module_states, ) partial_fn = partial(tpu_sync_module_states_fn, sync_module_states) xla_launch(partial_fn, strategy) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) def test_rank_properties_access(xla_available): """Test that the strategy returns the expected values depending on whether we're in the main process or not.""" strategy = XLAStrategy() strategy.cluster_environment = Mock() # we're in the main process, no processes have been launched yet assert not strategy._launched assert strategy.global_rank == 0 assert strategy.local_rank == 0 assert strategy.node_rank == 0 assert strategy.world_size == 1 # simulate we're in a worker process strategy._launched = True assert strategy.global_rank == strategy.cluster_environment.global_rank() assert strategy.local_rank == strategy.cluster_environment.local_rank() assert strategy.node_rank == strategy.cluster_environment.node_rank() assert strategy.world_size == strategy.cluster_environment.world_size()