# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser import torch import torch.nn.functional as F from torch import nn from torch.utils.data import DataLoader, random_split import pytorch_lightning as pl from pl_examples import _DATASETS_PATH, _TORCHVISION_AVAILABLE, _TORCHVISION_MNIST_AVAILABLE, cli_lightning_logo if _TORCHVISION_AVAILABLE: from torchvision import transforms if _TORCHVISION_MNIST_AVAILABLE: from torchvision.datasets import MNIST else: from tests.helpers.datasets import MNIST class LitAutoEncoder(pl.LightningModule): """ >>> LitAutoEncoder() # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE LitAutoEncoder( (encoder): ... (decoder): ... ) """ def __init__(self, hidden_dim: int = 64): super().__init__() self.encoder = nn.Sequential( nn.Linear(28 * 28, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 3), ) self.decoder = nn.Sequential( nn.Linear(3, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 28 * 28), ) def forward(self, x): # in lightning, forward defines the prediction/inference actions embedding = self.encoder(x) return embedding def training_step(self, batch, batch_idx): x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = F.mse_loss(x_hat, x) return loss def validation_step(self, batch, batch_idx): x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = F.mse_loss(x_hat, x) self.log('valid_loss', loss, on_step=True) def test_step(self, batch, batch_idx): x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = F.mse_loss(x_hat, x) self.log('test_loss', loss, on_step=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) return optimizer def cli_main(): pl.seed_everything(1234) # ------------ # args # ------------ parser = ArgumentParser() parser.add_argument('--batch_size', default=32, type=int) parser.add_argument('--hidden_dim', type=int, default=64) parser = pl.Trainer.add_argparse_args(parser) args = parser.parse_args() # ------------ # data # ------------ dataset = MNIST(_DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor()) mnist_test = MNIST(_DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor()) mnist_train, mnist_val = random_split(dataset, [55000, 5000]) train_loader = DataLoader(mnist_train, batch_size=args.batch_size) val_loader = DataLoader(mnist_val, batch_size=args.batch_size) test_loader = DataLoader(mnist_test, batch_size=args.batch_size) # ------------ # model # ------------ model = LitAutoEncoder(args.hidden_dim) # ------------ # training # ------------ trainer = pl.Trainer.from_argparse_args(args) trainer.fit(model, train_loader, val_loader) # ------------ # testing # ------------ result = trainer.test(test_dataloaders=test_loader) print(result) if __name__ == '__main__': cli_lightning_logo() cli_main()