# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from typing import Type import pytest import torch from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.plugins import DDPSpawnShardedPlugin from tests.helpers.boring_model import BoringModel, RandomDataset from tests.helpers.runif import RunIf class SeedTrainLoaderModel(BoringModel): """ Overrides training loader to ensure we enforce the same seed for all DDP processes. """ def train_dataloader(self): seed_everything(42) return torch.utils.data.DataLoader(RandomDataset(32, 64)) class SeedTrainLoaderManualModel(SeedTrainLoaderModel): def training_step(self, batch, batch_idx, optimizer_idx): # manual # access your optimizers with use_pl_optimizer=False. Default is True (opt_a, opt_b) = self.optimizers(use_pl_optimizer=True) loss_1 = self.step(batch) self.manual_backward(loss_1, opt_a) opt_a.step() # fake discriminator loss_2 = self.step(batch[0]) # ensure we forward the correct params to the optimizer # without retain_graph we can't do multiple backward passes self.manual_backward(loss_2, opt_b) # todo: understand why synchronization breaks there. # self.manual_backward(loss_2, opt_a, retain_graph=True) opt_b.step() assert self.layer.weight.grad is None or torch.all(self.layer.weight.grad == 0) def training_epoch_end(self, outputs) -> None: # outputs should be an array with an entry per optimizer assert len(outputs) == 2 def configure_optimizers(self): optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1) return optimizer, optimizer_2 @property def automatic_optimization(self) -> bool: return False class SeedTrainLoaderMultipleOptimizersModel(SeedTrainLoaderModel): def training_step(self, batch, batch_idx, optimizer_idx): output = self.layer(batch) loss = self.loss(batch, output) return {'loss': loss} def training_epoch_end(self, outputs) -> None: # outputs should be an array with an entry per optimizer assert len(outputs) == 2 def configure_optimizers(self): optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1) return optimizer, optimizer_2 def record_ddp_fit_model_stats(trainer, model, use_cuda): """ Helper to calculate wall clock time for fit + max allocated memory. Args: trainer: The trainer object. model: The model to fit. use_cuda: Whether to sync CUDA kernels. Returns: Max Memory if using GPUs, and total wall clock time. """ max_memory = None time_start = time.perf_counter() if use_cuda: torch.cuda.reset_peak_memory_stats() torch.cuda.synchronize() trainer.fit(model) if use_cuda: torch.cuda.synchronize() max_memory = torch.cuda.max_memory_allocated() / 2**20 total_time = time.perf_counter() - time_start return max_memory, total_time def plugin_parity_test( model_cls: Type[SeedTrainLoaderModel], seed: int = 42, gpus: int = 0, precision: int = 32, max_percent_speed_diff: float = 0.1, ): """ Ensures that the trained model is identical to the standard DDP implementation. Also checks for speed/memory regressions, we should expect always less memory but performance to fluctuate. Args: model_cls: Model class to use for test. seed: Seed for generators. Note that this does not handle the seed for data-loading on multi-process. gpus: Number of GPUS to enable. precision: Whether to use AMP or normal FP32 training. max_percent_speed_diff: The maximum speed difference compared to normal DDP training. This is more a safety net for variability in CI which can vary in speed, not for benchmarking. """ # Train normal DDP seed_everything(seed) ddp_model = model_cls() use_cuda = gpus > 0 trainer = Trainer( fast_dev_run=True, max_epochs=1, gpus=gpus, precision=precision, accelerator='ddp_spawn', ) max_memory_ddp, ddp_time = record_ddp_fit_model_stats(trainer=trainer, model=ddp_model, use_cuda=use_cuda) # Reset and train Custom DDP seed_everything(seed) custom_plugin_model = model_cls() trainer = Trainer( fast_dev_run=True, max_epochs=1, gpus=gpus, precision=precision, accelerator='ddp_sharded_spawn', ) assert isinstance(trainer.training_type_plugin, DDPSpawnShardedPlugin) max_memory_custom, custom_model_time = record_ddp_fit_model_stats( trainer=trainer, model=custom_plugin_model, use_cuda=use_cuda ) # Assert model parameters are identical after fit for ddp_param, custom_param in zip(ddp_model.parameters(), custom_plugin_model.parameters()): assert torch.equal(ddp_param, custom_param), 'Model parameters are different between DDP and Custom plugin' # Assert speed parity by ensuring percentage difference between custom/ddp is below threshold percent_diff = (custom_model_time - ddp_time) / custom_model_time assert ( percent_diff <= max_percent_speed_diff ), f'Custom DDP plugin was too slow compared to DDP, Custom Plugin Time: {custom_model_time}, DDP Time: {ddp_time}' if use_cuda: # Assert CUDA memory parity assert max_memory_custom <= max_memory_ddp, ( 'Custom plugin used too much memory compared to DDP, ' f'Custom Mem: {max_memory_custom}, DDP Mem: {max_memory_ddp}' ) @RunIf(skip_windows=True, fairscale=True) @pytest.mark.parametrize( 'kwargs', [ pytest.param(dict(gpus=1, model_cls=SeedTrainLoaderModel), marks=RunIf(min_gpus=1)), pytest.param( dict(gpus=1, precision=16, model_cls=SeedTrainLoaderModel), marks=RunIf(min_gpus=1, amp_native=True) ), pytest.param(dict(gpus=2, model_cls=SeedTrainLoaderModel), marks=RunIf(min_gpus=2)), pytest.param( dict(gpus=2, precision=16, model_cls=SeedTrainLoaderModel), marks=RunIf(min_gpus=2, amp_native=True) ), pytest.param( dict(gpus=2, model_cls=SeedTrainLoaderMultipleOptimizersModel), marks=[ RunIf(min_gpus=2), pytest.mark.skip(reason='TODO: Current issue with multiple optimizers and FairScale.'), ], ), pytest.param( dict(gpus=2, model_cls=SeedTrainLoaderManualModel), marks=[ RunIf(min_gpus=2), pytest.mark.skip(reason='TODO: Current issue with multiple optimizers and FairScale.'), ], ), ], ) def test_ddp_spawn_sharded_plugin(kwargs): if kwargs['gpus'] > 1: # TODO: decrease speed diff since only 2 GPUs sharding 2 optimizers kwargs['max_percent_speed_diff'] = 0.25 plugin_parity_test(**kwargs)