# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test Tube Logger ---------------- """ from argparse import Namespace from typing import Any, Dict, Optional, Union import pytorch_lightning as pl from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment from pytorch_lightning.utilities import _module_available, rank_zero_warn from pytorch_lightning.utilities.distributed import rank_zero_only _TESTTUBE_AVAILABLE = _module_available("test_tube") if _TESTTUBE_AVAILABLE: from test_tube import Experiment else: Experiment = None class TestTubeLogger(LightningLoggerBase): r""" Log to local file system in `TensorBoard `_ format but using a nicer folder structure (see `full docs `_). Install it with pip: .. code-block:: bash pip install test_tube .. code-block:: python from pytorch_lightning import Trainer from pytorch_lightning.loggers import TestTubeLogger logger = TestTubeLogger("tt_logs", name="my_exp_name") trainer = Trainer(logger=logger) Use the logger anywhere in your :class:`~pytorch_lightning.core.lightning.LightningModule` as follows: .. code-block:: python from pytorch_lightning import LightningModule class LitModel(LightningModule): def training_step(self, batch, batch_idx): # example self.logger.experiment.whatever_method_summary_writer_supports(...) def any_lightning_module_function_or_hook(self): self.logger.experiment.add_histogram(...) Args: save_dir: Save directory name: Experiment name. Defaults to ``'default'``. description: A short snippet about this experiment debug: If ``True``, it doesn't log anything. version: Experiment version. If version is not specified the logger inspects the save directory for existing versions, then automatically assigns the next available version. create_git_tag: If ``True`` creates a git tag to save the code used in this experiment. log_graph: Adds the computational graph to tensorboard. This requires that the user has defined the `self.example_input_array` attribute in their model. prefix: A string to put at the beginning of metric keys. Raises: ImportError: If required TestTube package is not installed on the device. """ __test__ = False LOGGER_JOIN_CHAR = "-" def __init__( self, save_dir: str, name: str = "default", description: Optional[str] = None, debug: bool = False, version: Optional[int] = None, create_git_tag: bool = False, log_graph: bool = False, prefix: str = "", ): if Experiment is None: raise ImportError( "You want to use `test_tube` logger which is not installed yet," " install it with `pip install test-tube`." ) super().__init__() self._save_dir = save_dir self._name = name self.description = description self.debug = debug self._version = version self.create_git_tag = create_git_tag self._log_graph = log_graph self._prefix = prefix self._experiment = None @property @rank_zero_experiment def experiment(self) -> Experiment: r""" Actual TestTube object. To use TestTube features in your :class:`~pytorch_lightning.core.lightning.LightningModule` do the following. Example:: self.logger.experiment.some_test_tube_function() """ if self._experiment is not None: return self._experiment self._experiment = Experiment( save_dir=self.save_dir, name=self._name, debug=self.debug, version=self.version, description=self.description, create_git_tag=self.create_git_tag, rank=rank_zero_only.rank, ) return self._experiment @rank_zero_only def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None: # TODO: HACK figure out where this is being set to true self.experiment.debug = self.debug params = self._convert_params(params) params = self._flatten_dict(params) self.experiment.argparse(Namespace(**params)) @rank_zero_only def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None: # TODO: HACK figure out where this is being set to true metrics = self._add_prefix(metrics) self.experiment.debug = self.debug self.experiment.log(metrics, global_step=step) @rank_zero_only def log_graph(self, model: "pl.LightningModule", input_array=None): if self._log_graph: if input_array is None: input_array = model.example_input_array if input_array is not None: self.experiment.add_graph(model, model._apply_batch_transfer_handler(input_array)) else: rank_zero_warn( "Could not log computational graph since neither the" " `model.example_input_array` attribute is set nor" " `input_array` was given", UserWarning, ) @rank_zero_only def save(self) -> None: super().save() # TODO: HACK figure out where this is being set to true self.experiment.debug = self.debug self.experiment.save() @rank_zero_only def finalize(self, status: str) -> None: super().finalize(status) # TODO: HACK figure out where this is being set to true self.experiment.debug = self.debug self.save() self.close() @rank_zero_only def close(self) -> None: super().save() # TODO: HACK figure out where this is being set to true self.experiment.debug = self.debug if not self.debug: exp = self.experiment exp.close() @property def save_dir(self) -> Optional[str]: return self._save_dir @property def name(self) -> str: if self._experiment is None: return self._name return self.experiment.name @property def version(self) -> int: if self._experiment is None: return self._version return self.experiment.version # Test tube experiments are not pickleable, so we need to override a few # methods to get DDP working. See # https://docs.python.org/3/library/pickle.html#handling-stateful-objects # for more info. def __getstate__(self) -> Dict[Any, Any]: state = self.__dict__.copy() state["_experiment"] = self.experiment.get_meta_copy() return state def __setstate__(self, state: Dict[Any, Any]): self._experiment = state["_experiment"].get_non_ddp_exp() del state["_experiment"] self.__dict__.update(state)