import contextlib import json import logging import os from typing import Any, Dict, Optional from unittest import mock import pytest import torch import torch.nn.functional as F from torch import nn, Tensor from torch.optim import Optimizer from torch.utils.data import DataLoader from torchmetrics import Accuracy from pytorch_lightning import LightningDataModule, LightningModule, seed_everything, Trainer from pytorch_lightning.callbacks import Callback, LearningRateMonitor, ModelCheckpoint from pytorch_lightning.plugins import DeepSpeedPrecisionPlugin from pytorch_lightning.strategies import DeepSpeedStrategy from pytorch_lightning.strategies.deepspeed import LightningDeepSpeedModule from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.imports import _DEEPSPEED_AVAILABLE from pytorch_lightning.utilities.meta import init_meta_context from tests.helpers.boring_model import BoringModel, RandomDataset, RandomIterableDataset from tests.helpers.datamodules import ClassifDataModule from tests.helpers.runif import RunIf if _DEEPSPEED_AVAILABLE: import deepspeed from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict class ModelParallelBoringModel(BoringModel): def __init__(self): super().__init__() self.layer = None def configure_sharded_model(self) -> None: self.layer = torch.nn.Linear(32, 2) def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: self.configure_sharded_model() class ModelParallelBoringModelNoSchedulers(ModelParallelBoringModel): def configure_optimizers(self): return torch.optim.SGD(self.layer.parameters(), lr=0.1) class ModelParallelBoringModelManualOptim(BoringModel): def __init__(self): super().__init__() self.layer = None def training_step(self, batch, batch_idx): opt = self.optimizers() output = self(batch) loss = self.loss(batch, output) opt.zero_grad() self.manual_backward(loss) opt.step() def configure_sharded_model(self) -> None: self.layer = torch.nn.Linear(32, 2) def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: self.configure_sharded_model() @property def automatic_optimization(self) -> bool: return False def test_deepspeed_lightning_module(tmpdir): """Test to ensure that a model wrapped in `LightningDeepSpeedModule` moves types and device correctly.""" model = BoringModel() module = LightningDeepSpeedModule(model, precision=16) module.half() assert module.dtype == torch.half assert model.dtype == torch.half module.to(torch.double) assert module.dtype == torch.double assert model.dtype == torch.double @RunIf(min_gpus=1) def test_deepspeed_lightning_module_precision(tmpdir): """Test to ensure that a model wrapped in `LightningDeepSpeedModule` moves tensors to half when precision 16.""" model = BoringModel() module = LightningDeepSpeedModule(model, precision=16) module.cuda().half() assert module.dtype == torch.half assert model.dtype == torch.half x = torch.randn((1, 32), dtype=torch.float).cuda() out = module(x) assert out.dtype == torch.half module.to(torch.double) assert module.dtype == torch.double assert model.dtype == torch.double @pytest.fixture def deepspeed_config(): return { "optimizer": {"type": "SGD", "params": {"lr": 3e-5}}, "scheduler": { "type": "WarmupLR", "params": {"last_batch_iteration": -1, "warmup_min_lr": 0, "warmup_max_lr": 3e-5, "warmup_num_steps": 100}, }, } @pytest.fixture def deepspeed_zero_config(deepspeed_config): return {**deepspeed_config, "zero_allow_untested_optimizer": True, "zero_optimization": {"stage": 2}} @RunIf(deepspeed=True) @pytest.mark.parametrize("strategy", ("deepspeed", DeepSpeedStrategy)) def test_deepspeed_strategy_string(tmpdir, strategy): """Test to ensure that the strategy can be passed via string or instance, and parallel devices is correctly set.""" trainer = Trainer( fast_dev_run=True, default_root_dir=tmpdir, strategy=strategy if isinstance(strategy, str) else strategy() ) assert isinstance(trainer.strategy, DeepSpeedStrategy) assert trainer.strategy.parallel_devices == [torch.device("cpu")] @RunIf(deepspeed=True) def test_deepspeed_strategy_env(tmpdir, monkeypatch, deepspeed_config): """Test to ensure that the strategy can be passed via a string with an environment variable.""" config_path = os.path.join(tmpdir, "temp.json") with open(config_path, "w") as f: f.write(json.dumps(deepspeed_config)) monkeypatch.setenv("PL_DEEPSPEED_CONFIG_PATH", config_path) trainer = Trainer(fast_dev_run=True, default_root_dir=tmpdir, strategy="deepspeed") strategy = trainer.strategy assert isinstance(strategy, DeepSpeedStrategy) assert strategy.parallel_devices == [torch.device("cpu")] assert strategy.config == deepspeed_config @RunIf(deepspeed=True) @pytest.mark.parametrize("precision", [16, "mixed"]) @pytest.mark.parametrize( "amp_backend", ["native", pytest.param("apex", marks=RunIf(amp_apex=True))], ) def test_deepspeed_precision_choice(amp_backend, precision, tmpdir): """Test to ensure precision plugin is also correctly chosen. DeepSpeed handles precision via Custom DeepSpeedPrecisionPlugin """ trainer = Trainer( fast_dev_run=True, default_root_dir=tmpdir, accelerator="gpu", strategy="deepspeed", amp_backend=amp_backend, precision=precision, ) assert isinstance(trainer.strategy, DeepSpeedStrategy) assert isinstance(trainer.strategy.precision_plugin, DeepSpeedPrecisionPlugin) assert trainer.strategy.precision_plugin.precision == precision @RunIf(deepspeed=True) def test_deepspeed_with_invalid_config_path(tmpdir): """Test to ensure if we pass an invalid config path we throw an exception.""" with pytest.raises( MisconfigurationException, match="You passed in a path to a DeepSpeed config but the path does not exist" ): DeepSpeedStrategy(config="invalid_path.json") @RunIf(deepspeed=True) def test_deepspeed_with_env_path(tmpdir, monkeypatch, deepspeed_config): """Test to ensure if we pass an env variable, we load the config from the path.""" config_path = os.path.join(tmpdir, "temp.json") with open(config_path, "w") as f: f.write(json.dumps(deepspeed_config)) monkeypatch.setenv("PL_DEEPSPEED_CONFIG_PATH", config_path) strategy = DeepSpeedStrategy() assert strategy.config == deepspeed_config @RunIf(deepspeed=True) def test_deepspeed_defaults(tmpdir): """Ensure that defaults are correctly set as a config for DeepSpeed if no arguments are passed.""" strategy = DeepSpeedStrategy() assert strategy.config is not None assert isinstance(strategy.config["zero_optimization"], dict) @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_warn_deepspeed_ignored(tmpdir): class TestModel(BoringModel): def backward(self, loss: Tensor, optimizer: Optimizer, optimizer_idx: int, *args, **kwargs) -> None: return loss.backward() model = TestModel() trainer = Trainer( fast_dev_run=True, default_root_dir=tmpdir, strategy=DeepSpeedStrategy(), gpus=1, precision=16, track_grad_norm=2, ) from pytorch_lightning.plugins.precision.deepspeed import warning_cache with pytest.warns(UserWarning, match="will be ignored since DeepSpeed handles the backward"): trainer.fit(model) assert any("track_grad_norm=2.0)' but this is not supported" in w for w in warning_cache) @RunIf(min_gpus=1, deepspeed=True) @pytest.mark.parametrize( ["dataset_cls", "value"], [(RandomDataset, "auto"), (RandomDataset, 10), (RandomIterableDataset, "auto"), (RandomIterableDataset, 10)], ) @mock.patch("deepspeed.init_distributed", autospec=True) @mock.patch("pytorch_lightning.Trainer.log_dir", new_callable=mock.PropertyMock, return_value="abc") def test_deepspeed_auto_batch_size_config_select(mock_deepspeed_distributed, mock_log_dir, tmpdir, dataset_cls, value): """Test to ensure that the batch size is correctly set as expected for deepspeed logging purposes.""" class TestModel(BoringModel): def train_dataloader(self): return DataLoader(dataset_cls(32, 64)) class AssertCallback(Callback): def setup(self, trainer, pl_module, stage: Optional[str] = None) -> None: assert isinstance(trainer.strategy, DeepSpeedStrategy) config = trainer.strategy.config # int value overrides auto mode expected_value = value if isinstance(value, int) else 1 if dataset_cls == RandomDataset: expected_value = pl_module.train_dataloader().batch_size if value == "auto" else value assert config["train_micro_batch_size_per_gpu"] == expected_value raise SystemExit ck = AssertCallback() model = TestModel() trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, callbacks=ck, gpus=1, strategy=DeepSpeedStrategy(logging_batch_size_per_gpu=value, zero_optimization=False), ) with pytest.raises(SystemExit): trainer.fit(model) @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_deepspeed_run_configure_optimizers(tmpdir): """Test end to end that deepspeed works with defaults (without ZeRO as that requires compilation), whilst using configure_optimizers for optimizers and schedulers.""" class TestCB(Callback): def on_train_start(self, trainer, pl_module) -> None: from deepspeed.runtime.zero.stage2 import FP16_DeepSpeedZeroOptimizer assert isinstance(trainer.optimizers[0], FP16_DeepSpeedZeroOptimizer) assert isinstance(trainer.optimizers[0].optimizer, torch.optim.SGD) assert isinstance(trainer.lr_scheduler_configs[0].scheduler, torch.optim.lr_scheduler.StepLR) # check that the lr_scheduler config was preserved assert trainer.lr_scheduler_configs[0].name == "Sean" class TestModel(BoringModel): def configure_optimizers(self): [optimizer], [scheduler] = super().configure_optimizers() return {"optimizer": optimizer, "lr_scheduler": {"scheduler": scheduler, "name": "Sean"}} model = TestModel() lr_monitor = LearningRateMonitor() trainer = Trainer( strategy=DeepSpeedStrategy(), # disable ZeRO so our optimizers are not wrapped default_root_dir=tmpdir, gpus=1, fast_dev_run=True, precision=16, callbacks=[TestCB(), lr_monitor], ) trainer.fit(model) assert lr_monitor.lrs == {"Sean": [0.1]} _assert_save_model_is_equal(model, tmpdir, trainer) @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_deepspeed_config(tmpdir, deepspeed_zero_config): """Test to ensure deepspeed works correctly when passed a DeepSpeed config object including optimizers/schedulers and saves the model weights to load correctly.""" class TestCB(Callback): def on_train_start(self, trainer, pl_module) -> None: from deepspeed.runtime.lr_schedules import WarmupLR from deepspeed.runtime.zero.stage2 import FP16_DeepSpeedZeroOptimizer assert isinstance(trainer.optimizers[0], FP16_DeepSpeedZeroOptimizer) assert isinstance(trainer.optimizers[0].optimizer, torch.optim.SGD) assert isinstance(trainer.lr_scheduler_configs[0].scheduler, WarmupLR) assert trainer.lr_scheduler_configs[0].interval == "step" model = BoringModel() trainer = Trainer( strategy=DeepSpeedStrategy(config=deepspeed_zero_config), default_root_dir=tmpdir, gpus=1, fast_dev_run=True, precision=16, callbacks=[TestCB()], ) trainer.fit(model) trainer.test(model) @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_deepspeed_custom_precision_params(tmpdir): """Ensure if we modify the FP16 parameters via the DeepSpeedStrategy, the deepspeed config contains these changes.""" class TestCB(Callback): def on_train_start(self, trainer, pl_module) -> None: assert trainer.strategy.config["fp16"]["loss_scale"] == 10 assert trainer.strategy.config["fp16"]["initial_scale_power"] == 10 assert trainer.strategy.config["fp16"]["loss_scale_window"] == 10 assert trainer.strategy.config["fp16"]["hysteresis"] == 10 assert trainer.strategy.config["fp16"]["min_loss_scale"] == 10 raise SystemExit() model = BoringModel() ds = DeepSpeedStrategy( loss_scale=10, initial_scale_power=10, loss_scale_window=10, hysteresis=10, min_loss_scale=10 ) trainer = Trainer(default_root_dir=tmpdir, strategy=ds, precision=16, gpus=1, callbacks=[TestCB()]) with pytest.raises(SystemExit): trainer.fit(model) @RunIf(deepspeed=True) def test_deepspeed_custom_activation_checkpointing_params(tmpdir): """Ensure if we modify the activation checkpointing parameters, the deepspeed config contains these changes.""" ds = DeepSpeedStrategy( partition_activations=True, cpu_checkpointing=True, contiguous_memory_optimization=True, synchronize_checkpoint_boundary=True, ) checkpoint_config = ds.config["activation_checkpointing"] assert checkpoint_config["partition_activations"] assert checkpoint_config["cpu_checkpointing"] assert checkpoint_config["contiguous_memory_optimization"] assert checkpoint_config["synchronize_checkpoint_boundary"] @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_deepspeed_custom_activation_checkpointing_params_forwarded(tmpdir): """Ensure if we modify the activation checkpointing parameters, we pass these to deepspeed.checkpointing.configure correctly.""" ds = DeepSpeedStrategy( partition_activations=True, cpu_checkpointing=True, contiguous_memory_optimization=True, synchronize_checkpoint_boundary=True, ) model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, enable_progress_bar=False, fast_dev_run=1, strategy=ds, precision=16, gpus=1, ) with mock.patch( "deepspeed.checkpointing.configure", wraps=deepspeed.checkpointing.configure ) as deepspeed_checkpointing_configure: trainer.fit(model) deepspeed_checkpointing_configure.assert_called_with( mpu_=None, partition_activations=True, contiguous_checkpointing=True, checkpoint_in_cpu=True, profile=None ) @RunIf(min_gpus=1, deepspeed=True) def test_deepspeed_assert_config_zero_offload_disabled(tmpdir, deepspeed_zero_config): """Ensure if we use a config and turn off offload_optimizer, that this is set to False within the config.""" deepspeed_zero_config["zero_optimization"]["offload_optimizer"] = False class TestCallback(Callback): def setup(self, trainer, pl_module, stage=None) -> None: assert trainer.strategy.config["zero_optimization"]["offload_optimizer"] is False raise SystemExit() model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, enable_progress_bar=False, max_epochs=1, strategy=DeepSpeedStrategy(config=deepspeed_zero_config), precision=16, gpus=1, callbacks=[TestCallback()], ) with pytest.raises(SystemExit): trainer.fit(model) @RunIf(min_gpus=2, deepspeed=True, standalone=True) def test_deepspeed_multigpu(tmpdir): """Test to ensure that DeepSpeed with multiple GPUs works and deepspeed distributed is initialized correctly.""" model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, strategy=DeepSpeedStrategy(stage=3), gpus=2, fast_dev_run=True, precision=16 ) with mock.patch("deepspeed.init_distributed", wraps=deepspeed.init_distributed) as mock_deepspeed_distributed: trainer.fit(model) mock_deepspeed_distributed.assert_called_once() trainer.test(model) _assert_save_model_is_equal(model, tmpdir, trainer) @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_deepspeed_fp32_works(tmpdir): model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, gpus=1, strategy="deepspeed_stage_3", fast_dev_run=True) trainer.fit(model) @RunIf(min_gpus=2, deepspeed=True, standalone=True) def test_deepspeed_stage_3_save_warning(tmpdir): """Test to ensure that DeepSpeed Stage 3 gives a warning when saving on rank zero.""" model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, strategy=DeepSpeedStrategy(stage=3), gpus=2, fast_dev_run=True, precision=16 ) trainer.fit(model) checkpoint_path = os.path.join(tmpdir, "model.pt") # both ranks need to call save checkpoint, however only rank 0 needs to check the warning context_manager = ( pytest.warns(UserWarning, match="each worker will save a shard of the checkpoint within a directory.") if trainer.is_global_zero else contextlib.suppress() ) with context_manager: trainer.save_checkpoint(checkpoint_path) @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_deepspeed_multigpu_single_file(tmpdir): """Test to ensure that DeepSpeed loads from a single file checkpoint.""" model = BoringModel() checkpoint_path = os.path.join(tmpdir, "model.pt") trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True) trainer.fit(model) trainer.save_checkpoint(checkpoint_path) trainer = Trainer( default_root_dir=tmpdir, strategy=DeepSpeedStrategy(stage=3), gpus=1, fast_dev_run=True, precision=16 ) strategy = trainer.strategy assert isinstance(strategy, DeepSpeedStrategy) assert not strategy.load_full_weights with pytest.raises(MisconfigurationException, match="DeepSpeed was unable to load the checkpoint."): trainer.test(model, ckpt_path=checkpoint_path) trainer = Trainer( default_root_dir=tmpdir, strategy=DeepSpeedStrategy(stage=3, load_full_weights=True), gpus=1, fast_dev_run=True, precision=16, ) strategy = trainer.strategy assert isinstance(strategy, DeepSpeedStrategy) assert strategy.load_full_weights trainer.test(model, ckpt_path=checkpoint_path) class ModelParallelClassificationModel(LightningModule): def __init__(self, lr: float = 0.01, num_blocks: int = 5): super().__init__() self.lr = lr self.num_blocks = num_blocks self.prepare_data_per_node = True self.train_acc = Accuracy() self.valid_acc = Accuracy() self.test_acc = Accuracy() def make_block(self): return nn.Sequential(nn.Linear(32, 32, bias=False), nn.ReLU()) def configure_sharded_model(self) -> None: self.model = nn.Sequential(*(self.make_block() for x in range(self.num_blocks)), nn.Linear(32, 3)) def forward(self, x): x = self.model(x) # Ensure output is in float32 for softmax operation x = x.float() logits = F.softmax(x, dim=1) return logits def training_step(self, batch, batch_idx): x, y = batch logits = self.forward(x) loss = F.cross_entropy(logits, y) self.log("train_loss", loss, prog_bar=True) self.log("train_acc", self.train_acc(logits, y), prog_bar=True, sync_dist=True) return {"loss": loss} def validation_step(self, batch, batch_idx): x, y = batch logits = self.forward(x) self.log("val_loss", F.cross_entropy(logits, y), prog_bar=False, sync_dist=True) self.log("val_acc", self.valid_acc(logits, y), prog_bar=True, sync_dist=True) def test_step(self, batch, batch_idx): x, y = batch logits = self.forward(x) self.log("test_loss", F.cross_entropy(logits, y), prog_bar=False, sync_dist=True) self.log("test_acc", self.test_acc(logits, y), prog_bar=True, sync_dist=True) def predict_step(self, batch, batch_idx, dataloader_idx=0): x, y = batch logits = self.forward(x) self.test_acc(logits, y) return self.test_acc.compute() def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.lr) lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.99) return [optimizer], [{"scheduler": lr_scheduler, "interval": "step"}] def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: if not hasattr(self, "model"): self.configure_sharded_model() # Lightning saves the lr schedulers, but DeepSpeed saves the optimizer states separately assert len(checkpoint["lr_schedulers"]) == 1 assert "optimizer_states" not in checkpoint class ManualModelParallelClassificationModel(ModelParallelClassificationModel): @property def automatic_optimization(self) -> bool: return False def training_step(self, batch, batch_idx): x, y = batch logits = self.forward(x) loss = F.cross_entropy(logits, y) opt = self.optimizers() self.log("train_loss", loss, prog_bar=True) self.log("train_acc", self.train_acc(logits, y), prog_bar=True, sync_dist=True) opt.zero_grad() self.manual_backward(loss) opt.step() @RunIf(min_gpus=2, deepspeed=True, standalone=True) def test_deepspeed_multigpu_stage_3(tmpdir, deepspeed_config): """Test to ensure ZeRO Stage 3 works with a parallel model.""" model = ModelParallelBoringModel() trainer = Trainer( default_root_dir=tmpdir, strategy=DeepSpeedStrategy(stage=3), gpus=2, fast_dev_run=True, precision=16 ) trainer.fit(model) trainer.test(model) _assert_save_model_is_equal(model, tmpdir, trainer) @RunIf(min_gpus=2, deepspeed=True, standalone=True) def test_deepspeed_multigpu_stage_3_manual_optimization(tmpdir, deepspeed_config): """Test to ensure ZeRO Stage 3 works with a parallel model.""" model = ModelParallelBoringModelManualOptim() model.training_epoch_end = None trainer = Trainer( default_root_dir=tmpdir, strategy=DeepSpeedStrategy(stage=3), gpus=2, fast_dev_run=True, precision=16 ) trainer.fit(model) trainer.test(model) _assert_save_model_is_equal(model, tmpdir, trainer) @pytest.mark.parametrize(("accumulate_grad_batches", "automatic_optimization"), [(1, False), (2, True)]) @RunIf(min_gpus=2, deepspeed=True, standalone=True) def test_deepspeed_multigpu_stage_3_checkpointing(tmpdir, automatic_optimization, accumulate_grad_batches): seed_everything(1) if automatic_optimization: model = ModelParallelClassificationModel() else: model = ManualModelParallelClassificationModel() dm = ClassifDataModule() ck = ModelCheckpoint(monitor="val_acc", mode="max", save_last=True, save_top_k=-1) trainer = Trainer( default_root_dir=tmpdir, max_epochs=10, strategy=DeepSpeedStrategy(stage=3), gpus=2, precision=16, accumulate_grad_batches=accumulate_grad_batches, callbacks=[ck], ) trainer.fit(model, datamodule=dm) results = trainer.test(datamodule=dm) assert results[0]["test_acc"] > 0.7 saved_results = trainer.test(ckpt_path=ck.best_model_path, datamodule=dm) assert saved_results[0]["test_acc"] > 0.7 assert saved_results == results if automatic_optimization: model = ModelParallelClassificationModel() else: model = ManualModelParallelClassificationModel() trainer = Trainer(default_root_dir=tmpdir, gpus=2, strategy=DeepSpeedStrategy(stage=3), precision=16) results = trainer.test(model, datamodule=dm, ckpt_path=ck.best_model_path) assert results[0]["test_acc"] > 0.7 @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_deepspeed_multigpu_stage_3_warns_resume_training(tmpdir): """Test to ensure with Stage 3 and multiple GPUs that we can resume from training, throwing a warning that the optimizer state and scheduler states cannot be restored.""" dm = ClassifDataModule() model = BoringModel() checkpoint_path = os.path.join(tmpdir, "model.pt") trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True) trainer.fit(model) trainer.save_checkpoint(checkpoint_path) trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, strategy=DeepSpeedStrategy(stage=3, load_full_weights=True), gpus=1, precision=16, ) with pytest.warns( UserWarning, match="A single checkpoint file has been given. This means optimizer states cannot be restored. " "If you'd like to restore these states, you must " "provide a path to the originally saved DeepSpeed checkpoint.", ): trainer.fit(model, datamodule=dm, ckpt_path=checkpoint_path) @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_deepspeed_multigpu_stage_3_resume_training(tmpdir): """Test to ensure with Stage 3 and single GPU that we can resume training.""" initial_model = ModelParallelClassificationModel() dm = ClassifDataModule() ck = ModelCheckpoint(monitor="val_acc", mode="max", save_last=True, save_top_k=-1) initial_trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=2, limit_val_batches=2, limit_test_batches=2, strategy=DeepSpeedStrategy(stage=3), gpus=1, precision=16, callbacks=[ck], enable_progress_bar=False, enable_model_summary=False, ) initial_trainer.fit(initial_model, datamodule=dm) class TestCallback(Callback): def on_train_batch_start( self, trainer: Trainer, pl_module: LightningModule, batch: Any, batch_idx: int ) -> None: original_deepspeed_strategy = initial_trainer.strategy current_deepspeed_strategy = trainer.strategy assert isinstance(original_deepspeed_strategy, DeepSpeedStrategy) assert isinstance(current_deepspeed_strategy, DeepSpeedStrategy) # assert optimizer states are the correctly loaded original_optimizer_dict = original_deepspeed_strategy.deepspeed_engine.optimizer.state_dict() current_optimizer_dict = current_deepspeed_strategy.deepspeed_engine.optimizer.state_dict() for orig_tensor, current_tensor in zip( original_optimizer_dict["fp32_flat_groups"], current_optimizer_dict["fp32_flat_groups"] ): assert torch.all(orig_tensor.eq(current_tensor)) # assert model state is loaded correctly for current_param, initial_param in zip(pl_module.parameters(), initial_model.parameters()): assert torch.equal(current_param.cpu(), initial_param.cpu()) # assert epoch has correctly been restored assert trainer.current_epoch == 1 # assert lr-scheduler states are loaded correctly original_lr_scheduler = initial_trainer.lr_scheduler_configs[0].scheduler current_lr_scheduler = trainer.lr_scheduler_configs[0].scheduler assert original_lr_scheduler.state_dict() == current_lr_scheduler.state_dict() model = ModelParallelClassificationModel() trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, strategy=DeepSpeedStrategy(stage=3), gpus=1, precision=16, callbacks=TestCallback(), enable_progress_bar=False, enable_model_summary=False, ) trainer.fit(model, datamodule=dm, ckpt_path=ck.best_model_path) @pytest.mark.parametrize("offload_optimizer", [False, True]) @RunIf(min_gpus=2, deepspeed=True, standalone=True) def test_deepspeed_multigpu_stage_2_accumulated_grad_batches(tmpdir, offload_optimizer): """Test to ensure with Stage 2 and multiple GPUs, accumulated grad batches works.""" seed_everything(42) class VerificationCallback(Callback): def __init__(self): self.on_train_batch_start_called = False def on_train_batch_start(self, trainer, pl_module: LightningModule, batch: Any, batch_idx: int) -> None: deepspeed_engine = trainer.strategy.model assert trainer.global_step == deepspeed_engine.global_steps self.on_train_batch_start_called = True model = ModelParallelClassificationModel() dm = ClassifDataModule() verification_callback = VerificationCallback() trainer = Trainer( default_root_dir=tmpdir, enable_progress_bar=False, # TODO: this test fails with max_epochs >1 as there are leftover batches per epoch. # there's divergence in how Lightning handles the last batch of the epoch with how DeepSpeed does it. # we step the optimizers on the last batch but DeepSpeed keeps the accumulation for the next epoch max_epochs=1, strategy=DeepSpeedStrategy(stage=2, offload_optimizer=offload_optimizer), gpus=2, limit_train_batches=5, limit_val_batches=2, precision=16, accumulate_grad_batches=2, callbacks=[verification_callback], ) assert trainer.limit_train_batches % trainer.accumulate_grad_batches != 0, "leftover batches should be tested" trainer.fit(model, datamodule=dm) assert verification_callback.on_train_batch_start_called @RunIf(min_gpus=2, deepspeed=True, standalone=True) def test_deepspeed_multigpu_test(tmpdir): """Test to ensure we can use DeepSpeed with just test using ZeRO Stage 3.""" model = ModelParallelBoringModel() trainer = Trainer( default_root_dir=tmpdir, strategy=DeepSpeedStrategy(stage=3), gpus=2, fast_dev_run=True, precision=16 ) trainer.test(model) # TODO(Sean): Once partial parameter partitioning is supported this test should be re-enabled @pytest.mark.skip("Partial parameter partitioning for DeepSpeed is currently broken.") @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_deepspeed_multigpu_partial_partition_parameters(tmpdir): """Test to ensure that a module that defines a layer inside the ``__init__`` and ``configure_sharded_model`` correctly converts all parameters to float16 when ``precision=16`` and runs successfully.""" class TestModel(ModelParallelBoringModel): def __init__(self): super().__init__() self.layer_2 = torch.nn.Linear(32, 32) def configure_sharded_model(self) -> None: self.layer = torch.nn.Linear(32, 2) def forward(self, x): x = self.layer_2(x) return self.layer(x) def on_train_epoch_start(self) -> None: assert all([x.dtype == torch.float16 for x in self.parameters()]) model = TestModel() trainer = Trainer( default_root_dir=tmpdir, strategy=DeepSpeedStrategy(stage=3), gpus=1, fast_dev_run=True, precision=16 ) trainer.fit(model) @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_deepspeed_multigpu_test_rnn(tmpdir): """Test to ensure that turning off explicit partitioning of the entire module for ZeRO Stage 3 works when training with certain layers which will crash with explicit partitioning.""" class TestModel(BoringModel): def __init__(self): super().__init__() self.rnn = torch.nn.GRU(32, 32) def on_train_epoch_start(self) -> None: assert all([x.dtype == torch.float16 for x in self.parameters()]) model = TestModel() trainer = Trainer( default_root_dir=tmpdir, strategy=DeepSpeedStrategy(stage=3), gpus=1, fast_dev_run=True, precision=16, ) trainer.fit(model) @RunIf(deepspeed=True) @mock.patch("deepspeed.init_distributed", autospec=True) @pytest.mark.parametrize("platform", ["Linux", "Windows"]) def test_deepspeed_strategy_env_variables(mock_deepspeed_distributed, tmpdir, platform): """Test to ensure that we setup distributed communication using correctly. When using windows, ranks environment variables should not be set, and deepspeed should handle this. """ trainer = Trainer(default_root_dir=tmpdir, strategy=DeepSpeedStrategy(stage=3)) strategy = trainer.strategy assert isinstance(strategy, DeepSpeedStrategy) with mock.patch("platform.system", return_value=platform) as mock_platform: strategy._init_deepspeed_distributed() mock_deepspeed_distributed.assert_called() mock_platform.assert_called() if platform == "Windows": # assert no env variables have been set within the DeepSpeedStrategy assert all(k not in os.environ for k in ("MASTER_PORT", "MASTER_ADDR", "RANK", "WORLD_SIZE", "LOCAL_RANK")) else: assert os.environ["MASTER_ADDR"] == str(trainer.strategy.cluster_environment.main_address) assert os.environ["MASTER_PORT"] == str(trainer.strategy.cluster_environment.main_port) assert os.environ["RANK"] == str(trainer.strategy.global_rank) assert os.environ["WORLD_SIZE"] == str(trainer.strategy.world_size) assert os.environ["LOCAL_RANK"] == str(trainer.strategy.local_rank) def _assert_save_model_is_equal(model, tmpdir, trainer): checkpoint_path = os.path.join(tmpdir, "model.pt") checkpoint_path = trainer.strategy.broadcast(checkpoint_path) trainer.save_checkpoint(checkpoint_path) trainer.strategy.barrier() # carry out the check only on rank 0 if trainer.is_global_zero: single_ckpt_path = os.path.join(tmpdir, "single_model.pt") convert_zero_checkpoint_to_fp32_state_dict(checkpoint_path, single_ckpt_path) state_dict = torch.load(single_ckpt_path) model = model.cpu() # Assert model parameters are identical after loading for orig_param, saved_model_param in zip(model.parameters(), state_dict.values()): if model.dtype == torch.half: # moved model to float32 for comparison with single fp32 saved weights saved_model_param = saved_model_param.half() assert torch.equal(orig_param, saved_model_param) @RunIf(min_gpus=2, deepspeed=True, standalone=True) def test_deepspeed_multigpu_no_schedulers(tmpdir): """Test to ensure ZeRO Stage 3 works with a parallel model and no schedulers.""" model = ModelParallelBoringModelNoSchedulers() trainer = Trainer( default_root_dir=tmpdir, strategy=DeepSpeedStrategy(stage=3), gpus=2, fast_dev_run=True, precision=16 ) trainer.fit(model) _assert_save_model_is_equal(model, tmpdir, trainer) @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_deepspeed_skip_backward_raises(tmpdir): class TestModel(BoringModel): def training_step(self, batch, batch_idx): return None model = TestModel() trainer = Trainer(default_root_dir=tmpdir, strategy=DeepSpeedStrategy(), gpus=1, fast_dev_run=True, precision=16) with pytest.raises(MisconfigurationException, match="returning `None` .* is not supported"): trainer.fit(model) @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_deepspeed_setup_train_dataloader(tmpdir): """Test DeepSpeed works when setup is required to call in the DataModule.""" class TestSetupIsCalledDataModule(LightningDataModule): def __init__(self): super().__init__() self._setup = False def setup(self, stage: Optional[str] = None) -> None: self._setup = True def train_dataloader(self): assert self._setup return DataLoader(RandomDataset(32, 64), batch_size=2) def val_dataloader(self): assert self._setup return DataLoader(RandomDataset(32, 64), batch_size=2) def test_dataloader(self): assert self._setup return DataLoader(RandomDataset(32, 64), batch_size=2) model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, strategy=DeepSpeedStrategy(logging_level=logging.INFO), gpus=1, fast_dev_run=True, ) dm = TestSetupIsCalledDataModule() with mock.patch("deepspeed.utils.logging.logger.warning", autospec=True) as mock_object: trainer.fit(model, datamodule=dm) assert any("Tried to infer the batch size" in str(arg) for arg in mock_object.call_args_list) @mock.patch("torch.optim.lr_scheduler.StepLR.step", autospec=True) @pytest.mark.parametrize("interval", ["step", "epoch"]) @pytest.mark.parametrize("max_epoch", [2]) @pytest.mark.parametrize("limit_train_batches", [2]) @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_scheduler_step_count(mock_step, max_epoch, limit_train_batches, interval): """Test to ensure that the scheduler is called the correct amount of times during training when scheduler is set to step or epoch.""" class TestModel(BoringModel): def configure_optimizers(self): optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.1) return { "optimizer": optimizer, "lr_scheduler": {"scheduler": scheduler, "interval": interval}, } model = TestModel() trainer = Trainer( default_root_dir=os.getcwd(), limit_train_batches=limit_train_batches, limit_val_batches=0, max_epochs=max_epoch, gpus=1, strategy="deepspeed", ) trainer.fit(model) if interval == "epoch": # assert called once at init and once during training assert mock_step.call_count == 1 + max_epoch else: # assert called once at init and once during training assert mock_step.call_count == 1 + (max_epoch * limit_train_batches) @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_deepspeed_configure_gradient_clipping(tmpdir): """Test to ensure that a warning is raised when `LightningModule.configure_gradient_clipping` is overridden in case of deepspeed.""" class TestModel(BoringModel): def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm): if optimizer_idx == 0: self.clip_gradients(optimizer, gradient_clip_val, gradient_clip_algorithm) model = TestModel() trainer = Trainer( default_root_dir=tmpdir, gpus=1, strategy="deepspeed", fast_dev_run=True, ) with pytest.warns(UserWarning, match="handles gradient clipping internally"): trainer.fit(model) @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_deepspeed_gradient_clip_by_value(tmpdir): """Test to ensure that an exception is raised when using `gradient_clip_algorithm='value'`.""" model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, gpus=1, strategy="deepspeed", gradient_clip_algorithm="value", ) with pytest.raises(MisconfigurationException, match="does not support clipping gradients by value"): trainer.fit(model) @RunIf(min_gpus=1, deepspeed=True, standalone=True) def test_different_accumulate_grad_batches_fails(tmpdir): model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, accumulate_grad_batches={1: 2}, gpus=1, strategy="deepspeed") with pytest.raises( MisconfigurationException, match="DeepSpeed currently does not support different `accumulate_grad_batches`" ): trainer.fit(model) @RunIf(min_gpus=2, deepspeed=True, standalone=True) def test_specific_gpu_device_id(tmpdir): class TestCallback(Callback): def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None: assert model.device.index == 1 def on_train_batch_start( self, trainer: Trainer, pl_module: LightningModule, batch: Any, batch_idx: int, ) -> None: assert batch.device.index == 1 def on_test_start(self, trainer: Trainer, pl_module: LightningModule) -> None: assert model.device.index == 1 def on_test_batch_start( self, trainer: Trainer, pl_module: LightningModule, batch: Any, batch_idx: int, dataloader_idx: int, ) -> None: assert batch.device.index == 1 model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, gpus=[1], strategy="deepspeed", callbacks=TestCallback() ) trainer.fit(model) trainer.test(model) @RunIf(min_gpus=2, deepspeed=True, standalone=True, min_torch="1.10.0") def test_deepspeed_with_meta_device(tmpdir): with init_meta_context(): model = BoringModel() assert model.layer.weight.device.type == "meta" trainer = Trainer( default_root_dir=tmpdir, strategy=DeepSpeedStrategy(stage=3), gpus=2, fast_dev_run=True, precision=16 ) trainer.fit(model) assert model.layer.weight.device.type == "cpu"