# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from torchmetrics.utilities import reduce from pytorch_lightning.utilities import rank_zero_warn def _psnr_compute( sum_squared_error: torch.Tensor, n_obs: torch.Tensor, data_range: torch.Tensor, base: float = 10.0, reduction: str = 'elementwise_mean', ) -> torch.Tensor: psnr_base_e = 2 * torch.log(data_range) - torch.log(sum_squared_error / n_obs) psnr = psnr_base_e * (10 / torch.log(torch.tensor(base))) return reduce(psnr, reduction=reduction) def _psnr_update(preds: torch.Tensor, target: torch.Tensor, dim: Optional[Union[int, Tuple[int, ...]]] = None) -> Tuple[torch.Tensor, torch.Tensor]: if dim is None: sum_squared_error = torch.sum(torch.pow(preds - target, 2)) n_obs = torch.tensor(target.numel(), device=target.device) return sum_squared_error, n_obs sum_squared_error = torch.sum(torch.pow(preds - target, 2), dim=dim) if isinstance(dim, int): dim_list = [dim] else: dim_list = list(dim) if not dim_list: n_obs = torch.tensor(target.numel(), device=target.device) else: n_obs = torch.tensor(target.size(), device=target.device)[dim_list].prod() n_obs = n_obs.expand_as(sum_squared_error) return sum_squared_error, n_obs def psnr( preds: torch.Tensor, target: torch.Tensor, data_range: Optional[float] = None, base: float = 10.0, reduction: str = 'elementwise_mean', dim: Optional[Union[int, Tuple[int, ...]]] = None, ) -> torch.Tensor: """ Computes the peak signal-to-noise ratio Args: preds: estimated signal target: groun truth signal data_range: the range of the data. If None, it is determined from the data (max - min). ``data_range`` must be given when ``dim`` is not None. base: a base of a logarithm to use (default: 10) reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'``: no reduction will be applied dim: Dimensions to reduce PSNR scores over provided as either an integer or a list of integers. Default is None meaning scores will be reduced across all dimensions. Return: Tensor with PSNR score Raises: ValueError: If ``dim`` is not ``None`` and ``data_range`` is not provided. Example: >>> from pytorch_lightning.metrics.functional import psnr >>> pred = torch.tensor([[0.0, 1.0], [2.0, 3.0]]) >>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]]) >>> psnr(pred, target) tensor(2.5527) """ if dim is None and reduction != 'elementwise_mean': rank_zero_warn(f'The `reduction={reduction}` will not have any effect when `dim` is None.') if data_range is None: if dim is not None: # Maybe we could use `torch.amax(target, dim=dim) - torch.amin(target, dim=dim)` in PyTorch 1.7 to calculate # `data_range` in the future. raise ValueError("The `data_range` must be given when `dim` is not None.") data_range = target.max() - target.min() else: data_range = torch.tensor(float(data_range)) sum_squared_error, n_obs = _psnr_update(preds, target, dim=dim) return _psnr_compute(sum_squared_error, n_obs, data_range, base=base, reduction=reduction)