import inspect from abc import ABC, abstractmethod from pytorch_lightning.core.datamodule import LightningDataModule from pytorch_lightning.core.lightning import LightningModule class TrainerModelHooksMixin(ABC): def is_function_implemented(self, f_name, model=None): if model is None: model = self.get_model() f_op = getattr(model, f_name, None) return callable(f_op) def is_overridden(self, method_name: str, model: LightningModule = None) -> bool: if model is None: model = self.get_model() # if you pass DataModule instead of None or a LightningModule, we use LightningDataModule as super # TODO - refector this function to accept model_name, instance, parent so it makes more sense super_object = LightningModule if not isinstance(model, LightningDataModule) else LightningDataModule # assert model, 'no model passes' if not hasattr(model, method_name): # in case of calling deprecated method return False instance_attr = getattr(model, method_name) if not instance_attr: return False super_attr = getattr(super_object, method_name) # when code pointers are different, it was implemented if hasattr(instance_attr, 'patch_loader_code'): # cannot pickle __code__ so cannot verify if PatchDataloader # exists which shows dataloader methods have been overwritten. # so, we hack it by using the string representation is_overridden = instance_attr.patch_loader_code != str(super_attr.__code__) else: is_overridden = instance_attr.__code__ is not super_attr.__code__ return is_overridden def has_arg(self, f_name, arg_name): model = self.get_model() f_op = getattr(model, f_name, None) return arg_name in inspect.signature(f_op).parameters @abstractmethod def get_model(self) -> LightningModule: """Warning: this is just empty shell for code implemented in other class."""