from abc import ABC from typing import Union, Iterable import torch from pytorch_lightning.core import memory from pytorch_lightning.loggers import TensorBoardLogger, LightningLoggerBase, LoggerCollection from pytorch_lightning.utilities.memory import recursive_detach class TrainerLoggingMixin(ABC): # this is just a summary on variables used in this abstract class, # the proper values/initialisation should be done in child class current_epoch: int on_gpu: bool log_gpu_memory: ... logger: Union[LightningLoggerBase, bool] progress_bar_metrics: ... global_step: int global_rank: int use_dp: bool use_ddp2: bool default_root_dir: str slurm_job_id: int num_gpus: int def configure_logger(self, logger): if logger is True: # default logger self.logger = TensorBoardLogger( save_dir=self.default_root_dir, version=self.slurm_job_id, name='lightning_logs' ) elif logger is False: self.logger = None else: if isinstance(logger, Iterable): self.logger = LoggerCollection(logger) else: self.logger = logger def log_metrics(self, metrics, grad_norm_dic, step=None): """Logs the metric dict passed in. If `step` parameter is None and `step` key is presented is metrics, uses metrics["step"] as a step Args: metrics (dict): Metric values grad_norm_dic (dict): Gradient norms step (int): Step for which metrics should be logged. Default value corresponds to `self.global_step` """ # add gpu memory if self.on_gpu and self.log_gpu_memory: mem_map = memory.get_memory_profile(self.log_gpu_memory) metrics.update(mem_map) # add norms metrics.update(grad_norm_dic) # turn all tensors to scalars scalar_metrics = self.metrics_to_scalars(metrics) if "step" in scalar_metrics and step is None: step = scalar_metrics.pop("step") elif step is None: # added metrics by Lightning for convenience scalar_metrics['epoch'] = self.current_epoch step = step if step is not None else self.global_step # log actual metrics if self.is_global_zero and self.logger is not None: self.logger.agg_and_log_metrics(scalar_metrics, step=step) self.logger.save() self.dev_debugger.track_logged_metrics_history(scalar_metrics) def add_progress_bar_metrics(self, metrics): for k, v in metrics.items(): if isinstance(v, torch.Tensor): v = v.item() self.progress_bar_metrics[k] = v self.dev_debugger.track_pbar_metrics_history(metrics) def metrics_to_scalars(self, metrics): new_metrics = {} for k, v in metrics.items(): if isinstance(v, torch.Tensor): v = v.item() if isinstance(v, dict): v = self.metrics_to_scalars(v) new_metrics[k] = v return new_metrics def process_output(self, output, train=False): """Reduces output according to the training mode. Separates loss from logging and progress bar metrics """ # -------------------------- # handle single scalar only # -------------------------- # single scalar returned from a xx_step if isinstance(output, torch.Tensor): progress_bar_metrics = {} log_metrics = {} callback_metrics = {} hiddens = None return output, progress_bar_metrics, log_metrics, callback_metrics, hiddens # --------------- # EXTRACT CALLBACK KEYS # --------------- # all keys not progress_bar or log are candidates for callbacks callback_metrics = {} for k, v in output.items(): if k not in ['progress_bar', 'log', 'hiddens']: callback_metrics[k] = v if train and (self.use_dp or self.use_ddp2): num_gpus = self.num_gpus callback_metrics = self.reduce_distributed_output(callback_metrics, num_gpus) # --------------- # EXTRACT PROGRESS BAR KEYS # --------------- try: progress_output = output['progress_bar'] # reduce progress metrics for progress bar when using dp if train and (self.use_dp or self.use_ddp2): num_gpus = self.num_gpus progress_output = self.reduce_distributed_output(progress_output, num_gpus) progress_bar_metrics = progress_output except Exception: progress_bar_metrics = {} # --------------- # EXTRACT LOGGING KEYS # --------------- # extract metrics to log to experiment try: log_output = output['log'] # reduce progress metrics for progress bar when using dp if train and (self.use_dp or self.use_ddp2): num_gpus = self.num_gpus log_output = self.reduce_distributed_output(log_output, num_gpus) log_metrics = log_output except Exception: log_metrics = {} # --------------- # EXTRACT LOSS # --------------- # if output dict doesn't have the keyword loss # then assume the output=loss if scalar loss = None if train: try: loss = output['loss'] except Exception: if isinstance(output, torch.Tensor): loss = output else: raise RuntimeError( 'No `loss` value in the dictionary returned from `model.training_step()`.' ) # when using dp need to reduce the loss if self.use_dp or self.use_ddp2: loss = self.reduce_distributed_output(loss, self.num_gpus) # --------------- # EXTRACT HIDDEN # --------------- hiddens = output.get('hiddens') # use every metric passed in as a candidate for callback callback_metrics.update(progress_bar_metrics) callback_metrics.update(log_metrics) # detach all metrics for callbacks to prevent memory leaks # no .item() because it will slow things down callback_metrics = recursive_detach(callback_metrics) return loss, progress_bar_metrics, log_metrics, callback_metrics, hiddens def reduce_distributed_output(self, output, num_gpus): if num_gpus <= 1: return output # when using DP, we get one output per gpu # average outputs and return if isinstance(output, torch.Tensor): return output.mean() for k, v in output.items(): # recurse on nested dics if isinstance(output[k], dict): output[k] = self.reduce_distributed_output(output[k], num_gpus) # compute the average of scalars elif isinstance(output[k], list): output[k] = sum(output[k]) / len(output[k]) # do nothing when there's a scalar elif isinstance(output[k], torch.Tensor) and output[k].dim() == 0: pass # do not reduce metrics that have batch size > num gpus elif output[k].size(0) <= num_gpus: output[k] = torch.mean(output[k]) return output