""" This file provides functions and decorators for automated input and output conversion to/from :class:`numpy.ndarray` and :class:`torch.Tensor` as well as utilities to sync tensors between different processes in a DDP scenario, when needed. """ import numbers from typing import Any, Callable, Optional, Union import numpy as np import torch from torch.utils.data._utils.collate import np_str_obj_array_pattern from pytorch_lightning.utilities import rank_zero_warn from pytorch_lightning.utilities.apply_func import apply_to_collection try: from torch.distributed import ReduceOp except ImportError: class ReduceOp: SUM = None rank_zero_warn('Unsupported `ReduceOp` for distributed computing.') def _apply_to_inputs(func_to_apply: Callable, *dec_args, **dec_kwargs) -> Callable: """ Decorator function to apply a function to all inputs of a function. Args: func_to_apply: the function to apply to the inputs *dec_args: positional arguments for the function to be applied **dec_kwargs: keyword arguments for the function to be applied Return: the decorated function """ def decorator_fn(func_to_decorate): # actual function applying the give function to inputs def new_func(*args, **kwargs): args = func_to_apply(args, *dec_args, **dec_kwargs) kwargs = func_to_apply(kwargs, *dec_args, **dec_kwargs) return func_to_decorate(*args, **kwargs) return new_func return decorator_fn def _apply_to_outputs(func_to_apply: Callable, *dec_args, **dec_kwargs) -> Callable: """ Decorator function to apply a function to all outputs of a function. Args: func_to_apply: the function to apply to the outputs *dec_args: positional arguments for the function to be applied **dec_kwargs: keyword arguments for the function to be applied Return: the decorated function """ def decorator_fn(function_to_decorate): # actual function applying the give function to outputs def new_func(*args, **kwargs): result = function_to_decorate(*args, **kwargs) return func_to_apply(result, *dec_args, **dec_kwargs) return new_func return decorator_fn def _convert_to_tensor(data: Any) -> Any: """ Maps all kind of collections and numbers to tensors. Args: data: the data to convert to tensor Return: the converted data """ if isinstance(data, numbers.Number): return torch.tensor([data]) # is not array of object elif isinstance(data, np.ndarray) and np_str_obj_array_pattern.search(data.dtype.str) is None: return torch.from_numpy(data) elif isinstance(data, torch.Tensor): return data raise TypeError(f"The given type ('{type(data).__name__}') cannot be converted to a tensor!") def _convert_to_numpy(data: Union[torch.Tensor, np.ndarray, numbers.Number]) -> np.ndarray: """Convert all tensors and numpy arrays to numpy arrays. Args: data: the tensor or array to convert to numpy Return: the resulting numpy array """ if isinstance(data, torch.Tensor): return data.cpu().detach().numpy() elif isinstance(data, numbers.Number): return np.array([data]) elif isinstance(data, np.ndarray): return data raise TypeError("The given type ('%s') cannot be converted to a numpy array!" % type(data).__name__) def _numpy_metric_input_conversion(func_to_decorate: Callable) -> Callable: """ Decorator converting all inputs of a function to numpy Args: func_to_decorate: the function whose inputs shall be converted Return: Callable: the decorated function """ return _apply_to_inputs( apply_to_collection, (torch.Tensor, np.ndarray, numbers.Number), _convert_to_numpy)(func_to_decorate) def _tensor_metric_output_conversion(func_to_decorate: Callable) -> Callable: """ Decorator converting all outputs of a function to tensors Args: func_to_decorate: the function whose outputs shall be converted Return: Callable: the decorated function """ return _apply_to_outputs(_convert_to_tensor)(func_to_decorate) def _numpy_metric_conversion(func_to_decorate: Callable) -> Callable: """ Decorator handling the argument conversion for metrics working on numpy. All inputs of the decorated function will be converted to numpy and all outputs will be converted to tensors. Args: func_to_decorate: the function whose inputs and outputs shall be converted Return: the decorated function """ # applies collection conversion from tensor to numpy to all inputs # we need to include numpy arrays here, since otherwise they will also be treated as sequences func_convert_inputs = _numpy_metric_input_conversion(func_to_decorate) # converts all inputs back to tensors (device doesn't matter here, since this is handled by BaseMetric) func_convert_in_out = _tensor_metric_output_conversion(func_convert_inputs) return func_convert_in_out def _tensor_metric_input_conversion(func_to_decorate: Callable) -> Callable: """ Decorator converting all inputs of a function to tensors Args: func_to_decorate: the function whose inputs shall be converted Return: Callable: the decorated function """ return _apply_to_inputs( apply_to_collection, (torch.Tensor, np.ndarray, numbers.Number), _convert_to_tensor)(func_to_decorate) def _tensor_collection_metric_output_conversion(func_to_decorate: Callable) -> Callable: """ Decorator converting all numpy arrays and numbers occuring in the outputs of a function to tensors Args: func_to_decorate: the function whose outputs shall be converted Return: Callable: the decorated function """ return _apply_to_outputs(apply_to_collection, (torch.Tensor, np.ndarray, numbers.Number), _convert_to_tensor)(func_to_decorate) def _tensor_metric_conversion(func_to_decorate: Callable) -> Callable: """ Decorator Handling the argument conversion for metrics working on tensors. All inputs and outputs of the decorated function will be converted to tensors Args: func_to_decorate: the function whose inputs and outputs shall be converted Return: the decorated function """ # converts all inputs to tensor if possible # we need to include tensors here, since otherwise they will also be treated as sequences func_convert_inputs = _tensor_metric_input_conversion(func_to_decorate) # convert all outputs to tensor if possible return _tensor_metric_output_conversion(func_convert_inputs) def _tensor_collection_metric_conversion(func_to_decorate: Callable) -> Callable: """ Decorator Handling the argument conversion for metrics working on tensors. All inputs of the decorated function and all numpy arrays and numbers in it's outputs will be converted to tensors Args: func_to_decorate: the function whose inputs and outputs shall be converted Return: the decorated function """ # converts all inputs to tensor if possible # we need to include tensors here, since otherwise they will also be treated as sequences func_convert_inputs = _tensor_metric_input_conversion(func_to_decorate) # convert all outputs to tensor if possible return _tensor_collection_metric_output_conversion(func_convert_inputs) def _sync_ddp_if_available(result: Union[torch.Tensor], group: Optional[Any] = None, reduce_op: Optional[ReduceOp] = None, ) -> torch.Tensor: """ Function to reduce the tensors from several ddp processes to one master process Args: result: the value to sync and reduce (typically tensor or number) group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to sum. Can also be a string of 'avg', 'mean' to calculate the mean during reduction. Return: reduced value """ if torch.distributed.is_available() and torch.distributed.is_initialized(): divide_by_world_size = False if group is None: group = torch.distributed.group.WORLD if reduce_op is None: reduce_op = torch.distributed.ReduceOp.SUM elif isinstance(reduce_op, str) and reduce_op in ('avg', 'mean'): reduce_op = torch.distributed.ReduceOp.SUM divide_by_world_size = True # sync all processes before reduction torch.distributed.barrier(group=group) torch.distributed.all_reduce(result, op=reduce_op, group=group, async_op=False) if divide_by_world_size: result = result / torch.distributed.get_world_size(group) return result def sync_ddp(group: Optional[Any] = None, reduce_op: Optional[ReduceOp] = None) -> Callable: """ This decorator syncs a functions outputs across different processes for DDP. Args: group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to sum Return: the decorated function """ def decorator_fn(func_to_decorate): return _apply_to_outputs(apply_to_collection, torch.Tensor, _sync_ddp_if_available, group=group, reduce_op=reduce_op)(func_to_decorate) return decorator_fn def numpy_metric(group: Optional[Any] = None, reduce_op: Optional[ReduceOp] = None) -> Callable: """ This decorator shall be used on all function metrics working on numpy arrays. It handles the argument conversion and DDP reduction for metrics working on numpy. All inputs of the decorated function will be converted to numpy and all outputs will be converted to tensors. In DDP Training all output tensors will be reduced according to the given rules. Args: group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to sum Return: the decorated function """ def decorator_fn(func_to_decorate): return sync_ddp(group=group, reduce_op=reduce_op)(_numpy_metric_conversion(func_to_decorate)) return decorator_fn def tensor_metric(group: Optional[Any] = None, reduce_op: Optional[ReduceOp] = None) -> Callable: """ This decorator shall be used on all function metrics working on tensors. It handles the argument conversion and DDP reduction for metrics working on tensors. All inputs and outputs of the decorated function will be converted to tensors. In DDP Training all output tensors will be reduced according to the given rules. Args: group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to sum Return: the decorated function """ def decorator_fn(func_to_decorate): return sync_ddp(group=group, reduce_op=reduce_op)(_tensor_metric_conversion(func_to_decorate)) return decorator_fn def tensor_collection_metric(group: Optional[Any] = None, reduce_op: Optional[ReduceOp] = None) -> Callable: """ This decorator shall be used on all function metrics working on tensors and returning collections that cannot be converted to tensors. It handles the argument conversion and DDP reduction for metrics working on tensors. All inputs and outputs of the decorated function will be converted to tensors. In DDP Training all output tensors will be reduced according to the given rules. Args: group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to sum Return: the decorated function """ def decorator_fn(func_to_decorate): return sync_ddp(group=group, reduce_op=reduce_op)(_tensor_collection_metric_conversion(func_to_decorate)) return decorator_fn