# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Existing images: # --build-arg PYTHON_VERSION=3.7 --build-arg PYTORCH_VERSION=1.8 --build-arg PYTORCH_CHANNEL=pytorch-nightly # --build-arg PYTHON_VERSION=3.7 --build-arg PYTORCH_VERSION=1.6 --build-arg PYTORCH_CHANNEL=pytorch # --build-arg PYTHON_VERSION=3.7 --build-arg PYTORCH_VERSION=1.5 --build-arg PYTORCH_CHANNEL=pytorch # --build-arg PYTHON_VERSION=3.7 --build-arg PYTORCH_VERSION=1.4 --build-arg PYTORCH_CHANNEL=pytorch ARG CUDNN_VERSION=8 ARG CUDA_VERSION=10.2 # FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 FROM nvidia/cuda:${CUDA_VERSION}-cudnn${CUDNN_VERSION}-devel-ubuntu18.04 # FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu18.04 ARG PYTHON_VERSION=3.7 ARG PYTORCH_VERSION=1.6 ARG PYTORCH_CHANNEL=pytorch ARG CONDA_VERSION=4.7.12 SHELL ["/bin/bash", "-c"] ENV PATH="$PATH:/root/.local/bin" RUN apt-get update -qq && \ apt-get install -y --no-install-recommends \ build-essential \ cmake \ git \ curl \ ca-certificates \ && \ # Install conda and python. # NOTE new Conda does not forward the exit status... https://github.com/conda/conda/issues/8385 curl -o ~/miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-${CONDA_VERSION}-Linux-x86_64.sh && \ chmod +x ~/miniconda.sh && \ ~/miniconda.sh -b && \ rm ~/miniconda.sh && \ # Cleaning apt-get autoremove -y && \ apt-get clean && \ rm -rf /root/.cache && \ rm -rf /var/lib/apt/lists/* ENV PATH="/root/miniconda3/bin:$PATH" ENV LD_LIBRARY_PATH="/root/miniconda3/lib:$LD_LIBRARY_PATH" ENV CUDA_TOOLKIT_ROOT_DIR="/usr/local/cuda" ENV HOROVOD_GPU_OPERATIONS=NCCL ENV HOROVOD_WITH_PYTORCH=1 ENV HOROVOD_WITHOUT_TENSORFLOW=1 ENV HOROVOD_WITHOUT_MXNET=1 ENV HOROVOD_WITH_GLOO=1 ENV HOROVOD_WITHOUT_MPI=1 #ENV MAKEFLAGS="-j$(nproc)" ENV MAKEFLAGS="-j1" ENV TORCH_CUDA_ARCH_LIST="3.7;5.0;6.0;7.0;7.5" ENV CONDA_ENV=lightning COPY environment.yml environment.yml # conda init RUN conda create -y --name $CONDA_ENV cudatoolkit=${CUDA_VERSION} && \ conda init bash && \ # NOTE: this requires that the channel is presented in the yaml before packages # replace channel to nigtly if needed, fix PT version and remove Horovod as it will be installe later python -c "fname = 'environment.yml' ; req = open(fname).read().replace('pytorch', '${PYTORCH_CHANNEL}', 1) ; open(fname, 'w').write(req)" && \ python -c "import re ; fname = 'environment.yml' ; req = re.sub(r'python[>=]+[\d\.]+', 'python=${PYTHON_VERSION}', open(fname).read()) ; open(fname, 'w').write(req)" && \ python -c "import re ; fname = 'environment.yml' ; req = re.sub(r'torch[>=]+[\d\.]+', 'torch=${PYTORCH_VERSION}', open(fname).read()) ; open(fname, 'w').write(req)" && \ python -c "fname = 'environment.yml' ; req = open(fname).readlines() ; open(fname, 'w').writelines([ln for ln in req if 'horovod' not in ln])" && \ cat environment.yml && \ conda env update --file environment.yml && \ conda clean -ya && \ rm environment.yml ENV PATH /root/miniconda3/envs/${CONDA_ENV}/bin:$PATH ENV LD_LIBRARY_PATH="/root/miniconda3/envs/${CONDA_ENV}/lib:$LD_LIBRARY_PATH" # if you want this environment to be the default one, uncomment the following line: ENV CONDA_DEFAULT_ENV=${CONDA_ENV} COPY ./requirements/extra.txt requirements-extra.txt COPY ./requirements/test.txt requirements-test.txt RUN \ # Install remaining requirements pip install -r requirements-extra.txt --no-cache-dir && \ pip install -r requirements-test.txt --no-cache-dir && \ rm requirements* RUN \ # install DALI, needed for examples pip install --extra-index-url https://developer.download.nvidia.com/compute/redist nvidia-dali-cuda${CUDA_VERSION%%.*}0 RUN \ # install NVIDIA AMP git clone https://github.com/NVIDIA/apex && \ pip install --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./apex && \ rm -rf apex RUN \ # Show what we have pip --version && \ conda info && \ pip list && \ python -c "import sys; assert sys.version[:3] == '$PYTHON_VERSION', sys.version" && \ python -c "import torch; assert torch.__version__[:3] == '$PYTORCH_VERSION', torch.__version__"