# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from unittest import mock from unittest.mock import ANY import pytest import torch import pytorch_lightning as pl from lightning_lite.plugins import TorchCheckpointIO, XLACheckpointIO from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.demos.boring_classes import BoringModel def test_finetuning_with_ckpt_path(tmpdir): """This test validates that generated ModelCheckpoint is pointing to the right best_model_path during test.""" checkpoint_callback = ModelCheckpoint(monitor="val_loss", dirpath=tmpdir, filename="{epoch:02d}", save_top_k=-1) class ExtendedBoringModel(BoringModel): def configure_optimizers(self): optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.001) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) return [optimizer], [lr_scheduler] def validation_step(self, batch, batch_idx): output = self.layer(batch) loss = self.loss(batch, output) self.log("val_loss", loss, on_epoch=True, prog_bar=True) model = ExtendedBoringModel() model.validation_epoch_end = None trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=12, limit_val_batches=6, limit_test_batches=12, callbacks=[checkpoint_callback], logger=False, ) trainer.fit(model) assert os.listdir(tmpdir) == ["epoch=00.ckpt"] best_model_paths = [checkpoint_callback.best_model_path] for idx in range(3, 6): # load from checkpoint trainer = pl.Trainer( default_root_dir=tmpdir, max_epochs=idx, limit_train_batches=12, limit_val_batches=12, limit_test_batches=12, enable_progress_bar=False, ) trainer.fit(model, ckpt_path=best_model_paths[-1]) trainer.test() best_model_paths.append(trainer.checkpoint_callback.best_model_path) for idx, best_model_path in enumerate(best_model_paths): if idx == 0: assert best_model_path.endswith(f"epoch=0{idx}.ckpt") else: assert f"epoch={idx + 1}" in best_model_path def test_trainer_save_checkpoint_storage_options(tmpdir, xla_available): """This test validates that storage_options argument is properly passed to ``CheckpointIO``""" model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, enable_checkpointing=False, ) trainer.fit(model) instance_path = tmpdir + "/path.ckpt" instance_storage_options = "my instance storage options" with mock.patch("lightning_lite.plugins.io.torch_io.TorchCheckpointIO.save_checkpoint") as io_mock: trainer.save_checkpoint(instance_path, storage_options=instance_storage_options) io_mock.assert_called_with(ANY, instance_path, storage_options=instance_storage_options) trainer.save_checkpoint(instance_path) io_mock.assert_called_with(ANY, instance_path, storage_options=None) with mock.patch( "pytorch_lightning.trainer.connectors.checkpoint_connector.CheckpointConnector.save_checkpoint" ) as cc_mock: trainer.save_checkpoint(instance_path, True) cc_mock.assert_called_with(instance_path, weights_only=True, storage_options=None) trainer.save_checkpoint(instance_path, False, instance_storage_options) cc_mock.assert_called_with(instance_path, weights_only=False, storage_options=instance_storage_options) torch_checkpoint_io = TorchCheckpointIO() with pytest.raises( TypeError, match=r"`Trainer.save_checkpoint\(..., storage_options=...\)` with `storage_options` arg" f" is not supported for `{torch_checkpoint_io.__class__.__name__}`. Please implement your custom `CheckpointIO`" " to define how you'd like to use `storage_options`.", ): torch_checkpoint_io.save_checkpoint({}, instance_path, storage_options=instance_storage_options) xla_checkpoint_io = XLACheckpointIO() with pytest.raises( TypeError, match=r"`Trainer.save_checkpoint\(..., storage_options=...\)` with `storage_options` arg" f" is not supported for `{xla_checkpoint_io.__class__.__name__}`. Please implement your custom `CheckpointIO`" " to define how you'd like to use `storage_options`.", ): xla_checkpoint_io.save_checkpoint({}, instance_path, storage_options=instance_storage_options)