.. role:: hidden :class: hidden-section .. testsetup:: * import os from pytorch_lightning.trainer.trainer import Trainer from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.utilities.seed import seed_everything .. _trainer: Trainer ======= Once you've organized your PyTorch code into a LightningModule, the Trainer automates everything else. .. raw:: html | This abstraction achieves the following: 1. You maintain control over all aspects via PyTorch code without an added abstraction. 2. The trainer uses best practices embedded by contributors and users from top AI labs such as Facebook AI Research, NYU, MIT, Stanford, etc... 3. The trainer allows overriding any key part that you don't want automated. | ----------- Basic use --------- This is the basic use of the trainer: .. code-block:: python model = MyLightningModule() trainer = Trainer() trainer.fit(model, train_dataloader, val_dataloader) -------- Under the hood -------------- Under the hood, the Lightning Trainer handles the training loop details for you, some examples include: - Automatically enabling/disabling grads - Running the training, validation and test dataloaders - Calling the Callbacks at the appropriate times - Putting batches and computations on the correct devices Here's the pseudocode for what the trainer does under the hood (showing the train loop only) .. code-block:: python # put model in train mode model.train() torch.set_grad_enabled(True) losses = [] for batch in train_dataloader: # calls hooks like this one on_train_batch_start() # train step loss = training_step(batch) # backward loss.backward() # apply and clear grads optimizer.step() optimizer.zero_grad() losses.append(loss) -------- Trainer in Python scripts ------------------------- In Python scripts, it's recommended you use a main function to call the Trainer. .. code-block:: python from argparse import ArgumentParser def main(hparams): model = LightningModule() trainer = Trainer(gpus=hparams.gpus) trainer.fit(model) if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('--gpus', default=None) args = parser.parse_args() main(args) So you can run it like so: .. code-block:: bash python main.py --gpus 2 .. note:: Pro-tip: You don't need to define all flags manually. Lightning can add them automatically .. code-block:: python from argparse import ArgumentParser def main(args): model = LightningModule() trainer = Trainer.from_argparse_args(args) trainer.fit(model) if __name__ == '__main__': parser = ArgumentParser() parser = Trainer.add_argparse_args(parser) args = parser.parse_args() main(args) So you can run it like so: .. code-block:: bash python main.py --gpus 2 --max_steps 10 --limit_train_batches 10 --any_trainer_arg x .. note:: If you want to stop a training run early, you can press "Ctrl + C" on your keyboard. The trainer will catch the `KeyboardInterrupt` and attempt a graceful shutdown, including running callbacks such as `on_train_end`. The trainer object will also set an attribute `interrupted` to `True` in such cases. If you have a callback which shuts down compute resources, for example, you can conditionally run the shutdown logic for only uninterrupted runs. ------------ Testing ------- Once you're done training, feel free to run the test set! (Only right before publishing your paper or pushing to production) .. code-block:: python trainer.test(test_dataloader=test_dataloader) ------------ Deployment / prediction ----------------------- You just trained a LightningModule which is also just a torch.nn.Module. Use it to do whatever! .. code-block:: python # load model pretrained_model = LightningModule.load_from_checkpoint(PATH) pretrained_model.freeze() # use it for finetuning def forward(self, x): features = pretrained_model(x) classes = classifier(features) # or for prediction out = pretrained_model(x) api_write({'response': out} You may wish to run the model on a variety of devices. Instead of moving the data manually to the correct device, decorate the forward method (or any other method you use for inference) with :func:`~pytorch_lightning.core.decorators.auto_move_data` and Lightning will take care of the rest. ------------ Reproducibility --------------- To ensure full reproducibility from run to run you need to set seeds for pseudo-random generators, and set ``deterministic`` flag in ``Trainer``. Example:: from pytorch_lightning import Trainer, seed_everything seed_everything(42) # sets seeds for numpy, torch, python.random and PYTHONHASHSEED. model = Model() trainer = Trainer(deterministic=True) ------- Trainer flags ------------- accelerator ^^^^^^^^^^^ .. raw:: html | The accelerator backend to use (previously known as distributed_backend). - (```dp```) is DataParallel (split batch among GPUs of same machine) - (```ddp```) is DistributedDataParallel (each gpu on each node trains, and syncs grads) - (```ddp_cpu```) is DistributedDataParallel on CPU (same as `ddp`, but does not use GPUs. Useful for multi-node CPU training or single-node debugging. Note that this will **not** give a speedup on a single node, since Torch already makes efficient use of multiple CPUs on a single machine.) - (```ddp2```) dp on node, ddp across nodes. Useful for things like increasing the number of negative samples .. testcode:: # default used by the Trainer trainer = Trainer(accelerator=None) Example:: # dp = DataParallel trainer = Trainer(gpus=2, accelerator='dp') # ddp = DistributedDataParallel trainer = Trainer(gpus=2, num_nodes=2, accelerator='ddp') # ddp2 = DistributedDataParallel + dp trainer = Trainer(gpus=2, num_nodes=2, accelerator='ddp2') .. note:: This option does not apply to TPU. TPUs use ```ddp``` by default (over each core) You can also modify hardware behavior by subclassing an existing accelerator to adjust for your needs. Example:: class MyOwnDDP(DDPAccelerator): ... Trainer(accelerator=MyOwnDDP()) .. warning:: Passing in custom accelerators is experimental but work is in progress to enable full compatibility. accumulate_grad_batches ^^^^^^^^^^^^^^^^^^^^^^^ .. raw:: html | Accumulates grads every k batches or as set up in the dict. Trainer also calls ``optimizer.step()`` for the last indivisible step number. .. testcode:: # default used by the Trainer (no accumulation) trainer = Trainer(accumulate_grad_batches=1) Example:: # accumulate every 4 batches (effective batch size is batch*4) trainer = Trainer(accumulate_grad_batches=4) # no accumulation for epochs 1-4. accumulate 3 for epochs 5-10. accumulate 20 after that trainer = Trainer(accumulate_grad_batches={5: 3, 10: 20}) amp_backend ^^^^^^^^^^^ .. raw:: html | Use PyTorch AMP ('native') (available PyTorch 1.6+), or NVIDIA apex ('apex'). .. testcode:: # using PyTorch built-in AMP, default used by the Trainer trainer = Trainer(amp_backend='native') # using NVIDIA Apex trainer = Trainer(amp_backend='apex') amp_level ^^^^^^^^^ .. raw:: html | The optimization level to use (O1, O2, etc...) for 16-bit GPU precision (using NVIDIA apex under the hood). Check `NVIDIA apex docs `_ for level Example:: # default used by the Trainer trainer = Trainer(amp_level='O2') automatic_optimization ^^^^^^^^^^^^^^^^^^^^^^ When set to False, Lightning does not automate the optimization process. This means you are responsible for your own optimizer behavior Example:: def training_step(self, batch, batch_idx): opt = self.optimizers() loss = ... self.manual_backward(loss, opt) opt.step() opt.zero_grad() This is not recommended when using a single optimizer, instead it's recommended when using 2+ optimizers AND you are an expert user. Most useful for research like RL, sparse coding and GAN research. In the multi-optimizer case, ignore the optimizer_idx flag and use the optimizers directly Example:: def training_step(self, batch, batch_idx, optimizer_idx): (opt_a, opt_b) = self.optimizers() gen_loss = ... self.manual_backward(gen_loss, opt_a) opt_a.step() opt_a.zero_grad() disc_loss = ... self.manual_backward(disc_loss, opt_b) opt_b.step() opt_b.zero_grad() auto_scale_batch_size ^^^^^^^^^^^^^^^^^^^^^ .. raw:: html | Automatically tries to find the largest batch size that fits into memory, before any training. .. code-block:: # default used by the Trainer (no scaling of batch size) trainer = Trainer(auto_scale_batch_size=None) # run batch size scaling, result overrides hparams.batch_size trainer = Trainer(auto_scale_batch_size='binsearch') # call tune to find the batch size trainer.tune(model) auto_select_gpus ^^^^^^^^^^^^^^^^ .. raw:: html | If enabled and `gpus` is an integer, pick available gpus automatically. This is especially useful when GPUs are configured to be in "exclusive mode", such that only one process at a time can access them. Example:: # no auto selection (picks first 2 gpus on system, may fail if other process is occupying) trainer = Trainer(gpus=2, auto_select_gpus=False) # enable auto selection (will find two available gpus on system) trainer = Trainer(gpus=2, auto_select_gpus=True) # specifies all GPUs regardless of its availability Trainer(gpus=-1, auto_select_gpus=False) # specifies all available GPUs (if only one GPU is not occupied, uses one gpu) Trainer(gpus=-1, auto_select_gpus=True) auto_lr_find ^^^^^^^^^^^^ .. raw:: html | Runs a learning rate finder algorithm (see this `paper `_) when calling trainer.tune(), to find optimal initial learning rate. .. code-block:: python # default used by the Trainer (no learning rate finder) trainer = Trainer(auto_lr_find=False) Example:: # run learning rate finder, results override hparams.learning_rate trainer = Trainer(auto_lr_find=True) # call tune to find the lr trainer.tune(model) Example:: # run learning rate finder, results override hparams.my_lr_arg trainer = Trainer(auto_lr_find='my_lr_arg') # call tune to find the lr trainer.tune(model) .. note:: See the :ref:`learning rate finder guide `. benchmark ^^^^^^^^^ .. raw:: html | If true enables cudnn.benchmark. This flag is likely to increase the speed of your system if your input sizes don't change. However, if it does, then it will likely make your system slower. The speedup comes from allowing the cudnn auto-tuner to find the best algorithm for the hardware `[see discussion here] `_. Example:: # default used by the Trainer trainer = Trainer(benchmark=False) deterministic ^^^^^^^^^^^^^ .. raw:: html | If true enables cudnn.deterministic. Might make your system slower, but ensures reproducibility. Also sets ``$HOROVOD_FUSION_THRESHOLD=0``. For more info check `[pytorch docs] `_. Example:: # default used by the Trainer trainer = Trainer(deterministic=False) callbacks ^^^^^^^^^ .. raw:: html | Add a list of :class:`~pytorch_lightning.callbacks.Callback`. .. code-block:: python # a list of callbacks callbacks = [PrintCallback()] trainer = Trainer(callbacks=callbacks) Example:: from pytorch_lightning.callbacks import Callback class PrintCallback(Callback): def on_train_start(self, trainer, pl_module): print("Training is started!") def on_train_end(self, trainer, pl_module): print("Training is done.") check_val_every_n_epoch ^^^^^^^^^^^^^^^^^^^^^^^ .. raw:: html | Check val every n train epochs. Example:: # default used by the Trainer trainer = Trainer(check_val_every_n_epoch=1) # run val loop every 10 training epochs trainer = Trainer(check_val_every_n_epoch=10) checkpoint_callback ^^^^^^^^^^^^^^^^^^^ .. raw:: html | By default Lightning saves a checkpoint for you in your current working directory, with the state of your last training epoch, Checkpoints capture the exact value of all parameters used by a model. To disable automatic checkpointing, set this to `False`. .. code-block:: python # default used by Trainer trainer = Trainer(checkpoint_callback=True) # turn off automatic checkpointing trainer = Trainer(checkpoint_callback=False) You can override the default behavior by initializing the :class:`~pytorch_lightning.callbacks.ModelCheckpoint` callback, and adding it to the :paramref:`~pytorch_lightning.trainer.trainer.Trainer.callbacks` list. See :ref:`Saving and Loading Weights ` for how to customize checkpointing. .. testcode:: from pytorch_lightning.callbacks import ModelCheckpoint # Init ModelCheckpoint callback, monitoring 'val_loss' checkpoint_callback = ModelCheckpoint(monitor='val_loss') # Add your callback to the callbacks list trainer = Trainer(callbacks=[checkpoint_callback]) .. warning:: Passing a ModelCheckpoint instance to this argument is deprecated since v1.1 and will be unsupported from v1.3. Use `callbacks` argument instead. default_root_dir ^^^^^^^^^^^^^^^^ .. raw:: html | Default path for logs and weights when no logger or :class:`pytorch_lightning.callbacks.ModelCheckpoint` callback passed. On certain clusters you might want to separate where logs and checkpoints are stored. If you don't then use this argument for convenience. Paths can be local paths or remote paths such as `s3://bucket/path` or 'hdfs://path/'. Credentials will need to be set up to use remote filepaths. .. testcode:: # default used by the Trainer trainer = Trainer(default_root_dir=os.getcwd()) distributed_backend ^^^^^^^^^^^^^^^^^^^ This has been renamed "accelerator". fast_dev_run ^^^^^^^^^^^^ .. raw:: html | Runs n if set to ``n`` (int) else 1 if set to ``True`` batch(es) of train, val and test to find any bugs (ie: a sort of unit test). Under the hood the pseudocode looks like this when running *fast_dev_run* with a single batch: .. code-block:: python # loading __init__() prepare_data # test training step training_batch = next(train_dataloader) training_step(training_batch) # test val step val_batch = next(val_dataloader) out = validation_step(val_batch) validation_epoch_end([out]) .. testcode:: # default used by the Trainer trainer = Trainer(fast_dev_run=False) # runs 1 train, val, test batch and program ends trainer = Trainer(fast_dev_run=True) # runs 7 train, val, test batches and program ends trainer = Trainer(fast_dev_run=7) .. note:: This argument is a bit different from ``limit_train/val/test_batches``. Setting this argument will disable tuner, logger callbacks like ``LearningRateLogger`` and runs for only 1 epoch. This must be used only for debugging purposes. ``limit_train/val/test_batches`` only limits the number of batches and won't disable anything. gpus ^^^^ .. raw:: html | - Number of GPUs to train on (int) - or which GPUs to train on (list) - can handle strings .. testcode:: # default used by the Trainer (ie: train on CPU) trainer = Trainer(gpus=None) # equivalent trainer = Trainer(gpus=0) Example:: # int: train on 2 gpus trainer = Trainer(gpus=2) # list: train on GPUs 1, 4 (by bus ordering) trainer = Trainer(gpus=[1, 4]) trainer = Trainer(gpus='1, 4') # equivalent # -1: train on all gpus trainer = Trainer(gpus=-1) trainer = Trainer(gpus='-1') # equivalent # combine with num_nodes to train on multiple GPUs across nodes # uses 8 gpus in total trainer = Trainer(gpus=2, num_nodes=4) # train only on GPUs 1 and 4 across nodes trainer = Trainer(gpus=[1, 4], num_nodes=4) See Also: - :ref:`Multi-GPU training guide `. gradient_clip_val ^^^^^^^^^^^^^^^^^ .. raw:: html | Gradient clipping value - 0 means don't clip. .. testcode:: # default used by the Trainer trainer = Trainer(gradient_clip_val=0.0) limit_test_batches ^^^^^^^^^^^^^^^^^^ .. raw:: html | How much of test dataset to check. .. testcode:: # default used by the Trainer trainer = Trainer(limit_test_batches=1.0) # run through only 25% of the test set each epoch trainer = Trainer(limit_test_batches=0.25) # run for only 10 batches trainer = Trainer(limit_test_batches=10) In the case of multiple test dataloaders, the limit applies to each dataloader individually. limit_val_batches ^^^^^^^^^^^^^^^^^ .. raw:: html | How much of validation dataset to check. Useful when debugging or testing something that happens at the end of an epoch. .. testcode:: # default used by the Trainer trainer = Trainer(limit_val_batches=1.0) # run through only 25% of the validation set each epoch trainer = Trainer(limit_val_batches=0.25) # run for only 10 batches trainer = Trainer(limit_val_batches=10) In the case of multiple validation dataloaders, the limit applies to each dataloader individually. log_gpu_memory ^^^^^^^^^^^^^^ .. raw:: html | Options: - None - 'min_max' - 'all' .. testcode:: # default used by the Trainer trainer = Trainer(log_gpu_memory=None) # log all the GPUs (on master node only) trainer = Trainer(log_gpu_memory='all') # log only the min and max memory on the master node trainer = Trainer(log_gpu_memory='min_max') .. note:: Might slow performance because it uses the output of nvidia-smi. flush_logs_every_n_steps ^^^^^^^^^^^^^^^^^^^^^^^^ .. raw:: html | Writes logs to disk this often. .. testcode:: # default used by the Trainer trainer = Trainer(flush_logs_every_n_steps=100) See Also: - :ref:`logging` logger ^^^^^^ .. raw:: html | :ref:`Logger ` (or iterable collection of loggers) for experiment tracking. .. testcode:: from pytorch_lightning.loggers import TensorBoardLogger # default logger used by trainer logger = TensorBoardLogger( save_dir=os.getcwd(), version=1, name='lightning_logs' ) Trainer(logger=logger) max_epochs ^^^^^^^^^^ .. raw:: html | Stop training once this number of epochs is reached .. testcode:: # default used by the Trainer trainer = Trainer(max_epochs=1000) min_epochs ^^^^^^^^^^ .. raw:: html | Force training for at least these many epochs .. testcode:: # default used by the Trainer trainer = Trainer(min_epochs=1) max_steps ^^^^^^^^^ .. raw:: html | Stop training after this number of steps Training will stop if max_steps or max_epochs have reached (earliest). .. testcode:: # Default (disabled) trainer = Trainer(max_steps=None) # Stop after 100 steps trainer = Trainer(max_steps=100) min_steps ^^^^^^^^^ .. raw:: html | Force training for at least these number of steps. Trainer will train model for at least min_steps or min_epochs (latest). .. testcode:: # Default (disabled) trainer = Trainer(min_steps=None) # Run at least for 100 steps (disable min_epochs) trainer = Trainer(min_steps=100, min_epochs=0) num_nodes ^^^^^^^^^ .. raw:: html | Number of GPU nodes for distributed training. .. testcode:: # default used by the Trainer trainer = Trainer(num_nodes=1) # to train on 8 nodes trainer = Trainer(num_nodes=8) num_processes ^^^^^^^^^^^^^ .. raw:: html | Number of processes to train with. Automatically set to the number of GPUs when using ``accelerator="ddp"``. Set to a number greater than 1 when using ``accelerator="ddp_cpu"`` to mimic distributed training on a machine without GPUs. This is useful for debugging, but **will not** provide any speedup, since single-process Torch already makes efficient use of multiple CPUs. .. testcode:: # Simulate DDP for debugging on your GPU-less laptop trainer = Trainer(accelerator="ddp_cpu", num_processes=2) num_sanity_val_steps ^^^^^^^^^^^^^^^^^^^^ .. raw:: html | Sanity check runs n batches of val before starting the training routine. This catches any bugs in your validation without having to wait for the first validation check. The Trainer uses 2 steps by default. Turn it off or modify it here. .. testcode:: # default used by the Trainer trainer = Trainer(num_sanity_val_steps=2) # turn it off trainer = Trainer(num_sanity_val_steps=0) # check all validation data trainer = Trainer(num_sanity_val_steps=-1) This option will reset the validation dataloader unless ``num_sanity_val_steps=0``. plugins ^^^^^^^ .. raw:: html | Plugins allow you to connect arbitrary backends, precision libraries, SLURM, etc... For example: - DDP - SLURM - TorchElastic - Apex To define your own behavior, subclass the relevant class and pass it in. Here's an example linking up your own cluster. .. code-block:: python from pytorch_lightning.cluster_environments import cluster_environment class MyCluster(ClusterEnvironment): def master_address(self): return your_master_address def master_port(self): return your_master_port def world_size(self): return the_world_size trainer = Trainer(cluster_environment=cluster_environment()) prepare_data_per_node ^^^^^^^^^^^^^^^^^^^^^ .. raw:: html | If True will call `prepare_data()` on LOCAL_RANK=0 for every node. If False will only call from NODE_RANK=0, LOCAL_RANK=0 .. testcode:: # default Trainer(prepare_data_per_node=True) # use only NODE_RANK=0, LOCAL_RANK=0 Trainer(prepare_data_per_node=False) tpu_cores ^^^^^^^^^ .. raw:: html | - How many TPU cores to train on (1 or 8). - Which TPU core to train on [1-8] A single TPU v2 or v3 has 8 cores. A TPU pod has up to 2048 cores. A slice of a POD means you get as many cores as you request. Your effective batch size is batch_size * total tpu cores. .. note:: No need to add a DistributedDataSampler, Lightning automatically does it for you. This parameter can be either 1 or 8. Example:: # your_trainer_file.py # default used by the Trainer (ie: train on CPU) trainer = Trainer(tpu_cores=None) # int: train on a single core trainer = Trainer(tpu_cores=1) # list: train on a single selected core trainer = Trainer(tpu_cores=[2]) # int: train on all cores few cores trainer = Trainer(tpu_cores=8) # for 8+ cores must submit via xla script with # a max of 8 cores specified. The XLA script # will duplicate script onto each TPU in the POD trainer = Trainer(tpu_cores=8) To train on more than 8 cores (ie: a POD), submit this script using the xla_dist script. Example:: python -m torch_xla.distributed.xla_dist --tpu=$TPU_POD_NAME --conda-env=torch-xla-nightly --env=XLA_USE_BF16=1 -- python your_trainer_file.py overfit_batches ^^^^^^^^^^^^^^^ .. raw:: html | Uses this much data of the training set. If nonzero, will use the same training set for validation and testing. If the training dataloaders have `shuffle=True`, Lightning will automatically disable it. Useful for quickly debugging or trying to overfit on purpose. .. testcode:: # default used by the Trainer trainer = Trainer(overfit_batches=0.0) # use only 1% of the train set (and use the train set for val and test) trainer = Trainer(overfit_batches=0.01) # overfit on 10 of the same batches trainer = Trainer(overfit_batches=10) precision ^^^^^^^^^ .. raw:: html | Full precision (32), half precision (16). Can be used on CPU, GPU or TPUs. If used on TPU will use torch.bfloat16 but tensor printing will still show torch.float32. .. testcode:: :skipif: not _APEX_AVAILABLE and not _NATIVE_AMP_AVAILABLE # default used by the Trainer trainer = Trainer(precision=32) # 16-bit precision trainer = Trainer(precision=16) Example:: # one day trainer = Trainer(precision=8|4|2) process_position ^^^^^^^^^^^^^^^^ .. raw:: html | Orders the progress bar. Useful when running multiple trainers on the same node. .. testcode:: # default used by the Trainer trainer = Trainer(process_position=0) .. note:: This argument is ignored if a custom callback is passed to :paramref:`~Trainer.callbacks`. profiler ^^^^^^^^ .. raw:: html | To profile individual steps during training and assist in identifying bottlenecks. See the :ref:`profiler documentation `. for more details. .. testcode:: from pytorch_lightning.profiler import SimpleProfiler, AdvancedProfiler # default used by the Trainer trainer = Trainer(profiler=None) # to profile standard training events, equivalent to `profiler=SimpleProfiler()` trainer = Trainer(profiler="simple") # advanced profiler for function-level stats, equivalent to `profiler=AdvancedProfiler()` trainer = Trainer(profiler="advanced") progress_bar_refresh_rate ^^^^^^^^^^^^^^^^^^^^^^^^^ .. raw:: html | How often to refresh progress bar (in steps). In notebooks, faster refresh rates (lower number) is known to crash them because of their screen refresh rates, so raise it to 50 or more. .. testcode:: # default used by the Trainer trainer = Trainer(progress_bar_refresh_rate=1) # disable progress bar trainer = Trainer(progress_bar_refresh_rate=0) Note: This argument is ignored if a custom callback is passed to :paramref:`~Trainer.callbacks`. reload_dataloaders_every_epoch ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. raw:: html | Set to True to reload dataloaders every epoch. .. code-block:: python # if False (default) train_loader = model.train_dataloader() for epoch in epochs: for batch in train_loader: ... # if True for epoch in epochs: train_loader = model.train_dataloader() for batch in train_loader: replace_sampler_ddp ^^^^^^^^^^^^^^^^^^^ .. raw:: html | Enables auto adding of distributed sampler. By default it will add ``shuffle=True`` for train sampler and ``shuffle=False`` for val/test sampler. If you want to customize it, you can set ``replace_sampler_ddp=False`` and add your own distributed sampler. If ``replace_sampler_ddp=True`` and a distributed sampler was already added, Lightning will not replace the existing one. .. testcode:: # default used by the Trainer trainer = Trainer(replace_sampler_ddp=True) By setting to False, you have to add your own distributed sampler: .. code-block:: python # default used by the Trainer sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=True) dataloader = DataLoader(dataset, batch_size=32, sampler=sampler) resume_from_checkpoint ^^^^^^^^^^^^^^^^^^^^^^ .. raw:: html | To resume training from a specific checkpoint pass in the path here. .. testcode:: # default used by the Trainer trainer = Trainer(resume_from_checkpoint=None) # resume from a specific checkpoint trainer = Trainer(resume_from_checkpoint='some/path/to/my_checkpoint.ckpt') log_every_n_steps ^^^^^^^^^^^^^^^^^ .. raw:: html | How often to add logging rows (does not write to disk) .. testcode:: # default used by the Trainer trainer = Trainer(log_every_n_steps=50) See Also: - :ref:`logging` sync_batchnorm ^^^^^^^^^^^^^^ .. raw:: html | Enable synchronization between batchnorm layers across all GPUs. .. testcode:: trainer = Trainer(sync_batchnorm=True) track_grad_norm ^^^^^^^^^^^^^^^ .. raw:: html | - no tracking (-1) - Otherwise tracks that norm (2 for 2-norm) .. testcode:: # default used by the Trainer trainer = Trainer(track_grad_norm=-1) # track the 2-norm trainer = Trainer(track_grad_norm=2) limit_train_batches ^^^^^^^^^^^^^^^^^^^ .. raw:: html | How much of training dataset to check. Useful when debugging or testing something that happens at the end of an epoch. .. testcode:: # default used by the Trainer trainer = Trainer(limit_train_batches=1.0) Example:: # default used by the Trainer trainer = Trainer(limit_train_batches=1.0) # run through only 25% of the training set each epoch trainer = Trainer(limit_train_batches=0.25) # run through only 10 batches of the training set each epoch trainer = Trainer(limit_train_batches=10) truncated_bptt_steps ^^^^^^^^^^^^^^^^^^^^ .. raw:: html | Truncated back prop breaks performs backprop every k steps of a much longer sequence. If this is enabled, your batches will automatically get truncated and the trainer will apply Truncated Backprop to it. (`Williams et al. "An efficient gradient-based algorithm for on-line training of recurrent network trajectories." `_) .. testcode:: # default used by the Trainer (ie: disabled) trainer = Trainer(truncated_bptt_steps=None) # backprop every 5 steps in a batch trainer = Trainer(truncated_bptt_steps=5) .. note:: Make sure your batches have a sequence dimension. Lightning takes care to split your batch along the time-dimension. .. code-block:: python # we use the second as the time dimension # (batch, time, ...) sub_batch = batch[0, 0:t, ...] Using this feature requires updating your LightningModule's :meth:`pytorch_lightning.core.LightningModule.training_step` to include a `hiddens` arg with the hidden .. code-block:: python # Truncated back-propagation through time def training_step(self, batch, batch_idx, hiddens): # hiddens are the hiddens from the previous truncated backprop step out, hiddens = self.lstm(data, hiddens) # remember to detach() hiddens. # If you don't, you will get a RuntimeError: Trying to backward through # the graph a second time... # Using hiddens.detach() allows each split to be disconnected. return { "loss": ..., "hiddens": hiddens # remember to detach() this } To modify how the batch is split, override :meth:`pytorch_lightning.core.LightningModule.tbptt_split_batch`: .. testcode:: class LitMNIST(LightningModule): def tbptt_split_batch(self, batch, split_size): # do your own splitting on the batch return splits val_check_interval ^^^^^^^^^^^^^^^^^^ .. raw:: html | How often within one training epoch to check the validation set. Can specify as float or int. - use (float) to check within a training epoch - use (int) to check every n steps (batches) .. testcode:: # default used by the Trainer trainer = Trainer(val_check_interval=1.0) # check validation set 4 times during a training epoch trainer = Trainer(val_check_interval=0.25) # check validation set every 1000 training batches # use this when using iterableDataset and your dataset has no length # (ie: production cases with streaming data) trainer = Trainer(val_check_interval=1000) weights_save_path ^^^^^^^^^^^^^^^^^ .. raw:: html | Directory of where to save weights if specified. .. testcode:: # default used by the Trainer trainer = Trainer(weights_save_path=os.getcwd()) # save to your custom path trainer = Trainer(weights_save_path='my/path') Example:: # if checkpoint callback used, then overrides the weights path # **NOTE: this saves weights to some/path NOT my/path checkpoint = ModelCheckpoint(dirpath='some/path') trainer = Trainer( callbacks=[checkpoint], weights_save_path='my/path' ) weights_summary ^^^^^^^^^^^^^^^ .. raw:: html | Prints a summary of the weights when training begins. Options: 'full', 'top', None. .. testcode:: # default used by the Trainer (ie: print summary of top level modules) trainer = Trainer(weights_summary='top') # print full summary of all modules and submodules trainer = Trainer(weights_summary='full') # don't print a summary trainer = Trainer(weights_summary=None) ----- Trainer class API ----------------- Methods ^^^^^^^ init **** .. automethod:: pytorch_lightning.trainer.Trainer.__init__ :noindex: fit **** .. automethod:: pytorch_lightning.trainer.Trainer.fit :noindex: test **** .. automethod:: pytorch_lightning.trainer.Trainer.test :noindex: tune **** .. automethod:: pytorch_lightning.trainer.Trainer.tune :noindex: Properties ^^^^^^^^^^ callback_metrics **************** The metrics available to callbacks. These are automatically set when you log via `self.log` .. code-block:: python def training_step(self, batch, batch_idx): self.log('a_val', 2) callback_metrics = trainer.callback_metrics assert callback_metrics['a_val'] == 2 current_epoch ************* The current epoch .. code-block:: python def training_step(self, batch, batch_idx): current_epoch = self.trainer.current_epoch if current_epoch > 100: # do something pass logger (p) ********** The current logger being used. Here's an example using tensorboard .. code-block:: python def training_step(self, batch, batch_idx): logger = self.trainer.logger tensorboard = logger.experiment logged_metrics ************** The metrics sent to the logger (visualizer). .. code-block:: python def training_step(self, batch, batch_idx): self.log('a_val', 2, log=True) logged_metrics = trainer.logged_metrics assert logged_metrics['a_val'] == 2 log_dir ******* The directory for the current experiment. Use this to save images to, etc... .. code-block:: python def training_step(self, batch, batch_idx): img = ... save_img(img, self.trainer.log_dir) is_global_zero ************** Whether this process is the global zero in multi-node training .. code-block:: python def training_step(self, batch, batch_idx): if self.trainer.is_global_zero: print('in node 0, accelerator 0') progress_bar_metrics ******************** The metrics sent to the progress bar. .. code-block:: python def training_step(self, batch, batch_idx): self.log('a_val', 2, prog_bar=True) progress_bar_metrics = trainer.progress_bar_metrics assert progress_bar_metrics['a_val'] == 2