# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" Early Stopping ^^^^^^^^^^^^^^ Monitor a metric and stop training when it stops improving. """ import numpy as np import torch from pytorch_lightning.callbacks.base import Callback from pytorch_lightning.utilities import rank_zero_info, rank_zero_warn from pytorch_lightning.utilities.exceptions import MisconfigurationException class EarlyStopping(Callback): r""" Monitor a metric and stop training when it stops improving. Args: monitor: quantity to be monitored. Default: ``'early_stop_on'``. min_delta: minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than `min_delta`, will count as no improvement. Default: ``0.0``. patience: number of validation epochs with no improvement after which training will be stopped. Default: ``3``. verbose: verbosity mode. Default: ``False``. mode: one of {auto, min, max}. In `min` mode, training will stop when the quantity monitored has stopped decreasing; in `max` mode it will stop when the quantity monitored has stopped increasing; in `auto` mode, the direction is automatically inferred from the name of the monitored quantity. .. warning:: Setting ``mode='auto'`` has been deprecated in v1.1 and will be removed in v1.3. strict: whether to crash the training if `monitor` is not found in the validation metrics. Default: ``True``. Example:: >>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import EarlyStopping >>> early_stopping = EarlyStopping('val_loss') >>> trainer = Trainer(callbacks=[early_stopping]) """ mode_dict = { 'min': torch.lt, 'max': torch.gt, } def __init__( self, monitor: str = 'early_stop_on', min_delta: float = 0.0, patience: int = 3, verbose: bool = False, mode: str = 'auto', strict: bool = True, ): super().__init__() self.monitor = monitor self.patience = patience self.verbose = verbose self.strict = strict self.min_delta = min_delta self.wait_count = 0 self.stopped_epoch = 0 self.mode = mode self.warned_result_obj = False self.__init_monitor_mode() self.min_delta *= 1 if self.monitor_op == torch.gt else -1 torch_inf = torch.tensor(np.Inf) self.best_score = torch_inf if self.monitor_op == torch.lt else -torch_inf def __init_monitor_mode(self): if self.mode not in self.mode_dict and self.mode != 'auto': raise MisconfigurationException(f"`mode` can be auto, {', '.join(self.mode_dict.keys())}, got {self.mode}") # TODO: Update with MisconfigurationException when auto mode is removed in v1.3 if self.mode == 'auto': rank_zero_warn( "mode='auto' is deprecated in v1.1 and will be removed in v1.3." " Default value for mode with be 'min' in v1.3.", DeprecationWarning ) if "acc" in self.monitor or self.monitor.startswith("fmeasure"): self.mode = 'max' else: self.mode = 'min' if self.verbose > 0: rank_zero_info(f'EarlyStopping mode set to {self.mode} for monitoring {self.monitor}.') def _validate_condition_metric(self, logs): monitor_val = logs.get(self.monitor) error_msg = ( f'Early stopping conditioned on metric `{self.monitor}` which is not available.' ' Pass in or modify your `EarlyStopping` callback to use any of the following:' f' `{"`, `".join(list(logs.keys()))}`' ) if monitor_val is None: if self.strict: raise RuntimeError(error_msg) if self.verbose > 0: rank_zero_warn(error_msg, RuntimeWarning) return False return True @property def monitor_op(self): return self.mode_dict[self.mode] def on_save_checkpoint(self, trainer, pl_module): return { 'wait_count': self.wait_count, 'stopped_epoch': self.stopped_epoch, 'best_score': self.best_score, 'patience': self.patience } def on_load_checkpoint(self, checkpointed_state): self.wait_count = checkpointed_state['wait_count'] self.stopped_epoch = checkpointed_state['stopped_epoch'] self.best_score = checkpointed_state['best_score'] self.patience = checkpointed_state['patience'] def on_validation_end(self, trainer, pl_module): if trainer.running_sanity_check: return self._run_early_stopping_check(trainer, pl_module) def _run_early_stopping_check(self, trainer, pl_module): """ Checks whether the early stopping condition is met and if so tells the trainer to stop the training. """ logs = trainer.callback_metrics if ( trainer.fast_dev_run # disable early_stopping with fast_dev_run or not self._validate_condition_metric(logs) # short circuit if metric not present ): return # short circuit if metric not present current = logs.get(self.monitor) # when in dev debugging trainer.dev_debugger.track_early_stopping_history(self, current) if self.monitor_op(current - self.min_delta, self.best_score): self.best_score = current self.wait_count = 0 else: self.wait_count += 1 should_stop = self.wait_count >= self.patience if bool(should_stop): self.stopped_epoch = trainer.current_epoch trainer.should_stop = True # stop every ddp process if any world process decides to stop should_stop = trainer.accelerator_backend.early_stopping_should_stop(pl_module) trainer.should_stop = should_stop