import torch from pytorch_lightning.root_module.memory import ModelSummary from pytorch_lightning.root_module.grads import GradInformation from pytorch_lightning.root_module.model_saving import ModelIO, load_hparams_from_tags_csv from pytorch_lightning.root_module.hooks import ModelHooks from pytorch_lightning.root_module.decorators import data_loader class LightningModule(GradInformation, ModelIO, ModelHooks): def __init__(self, *args, **kwargs): super(LightningModule, self).__init__(*args, **kwargs) self.dtype = torch.FloatTensor self.exp_save_path = None self.current_epoch = 0 self.global_step = 0 self.loaded_optimizer_states_dict = {} self.trainer = None self.experiment = None self.example_input_array = None # track if gpu was requested for checkpointing self.on_gpu = False def forward(self, *args, **kwargs): """ Expand model in into whatever you need. Also need to return the target :param x: :return: """ raise NotImplementedError def training_step(self, *args, **kwargs): """ return loss, dict with metrics for tqdm :param called with batch, batch_nb additional: optimizer_i if multiple optimizers used :return: """ raise NotImplementedError def validation_step(self, *args, **kwargs): """ return whatever outputs will need to be aggregated in validation_end OPTIONAL :param called with batch, batch_nb additional: dataset_i if multiple val datasets used :return: """ pass def validation_end(self, outputs): """ Outputs has the appended output after each validation step OPTIONAL :param outputs: :return: dic_with_metrics for tqdm """ pass def configure_optimizers(self): """ Return a list of optimizers and a list of schedulers (could be empty) :return: """ raise NotImplementedError def optimizer_step(self, epoch_nb, batch_nb, optimizer, optimizer_i): """ Do something instead of the standard optimizer behavior :param epoch_nb: :param batch_nb: :param optimizer: :param optimizer_i: :return: """ optimizer.step() # clear gradients optimizer.zero_grad() @data_loader def tng_dataloader(self): """ Implement a PyTorch DataLoader :return: """ raise NotImplementedError @data_loader def test_dataloader(self): """ Implement a PyTorch DataLoader :return: """ return None @data_loader def val_dataloader(self): """ Implement a PyTorch DataLoader :return: """ return None @classmethod def load_from_metrics(cls, weights_path, tags_csv, on_gpu, map_location=None): """ Primary way of loading model from csv weights path :param weights_path: :param tags_csv: :param on_gpu: :param map_location: dic for mapping storage {'cuda:1':'cuda:0'} :return: """ hparams = load_hparams_from_tags_csv(tags_csv) hparams.__setattr__('on_gpu', on_gpu) if on_gpu: if map_location is not None: checkpoint = torch.load(weights_path, map_location=map_location) else: checkpoint = torch.load(weights_path) else: checkpoint = torch.load(weights_path, map_location=lambda storage, loc: storage) # load the state_dict on the model automatically model = cls(hparams) model.load_state_dict(checkpoint['state_dict']) # give model a chance to load something model.on_load_checkpoint(checkpoint) return model def summarize(self): model_summary = ModelSummary(self) print(model_summary) def freeze(self): for param in self.parameters(): param.requires_grad = False def unfreeze(self): for param in self.parameters(): param.requires_grad = True