from pytorch_lightning import Trainer from examples import LightningTemplateModel from argparse import Namespace from test_tube import Experiment from pytorch_lightning.callbacks import ModelCheckpoint import os import shutil import pytorch_lightning as ptl import torch from torch.nn import functional as F from torch.utils.data import DataLoader from torchvision.datasets import MNIST class CoolModel(ptl.LightningModule): def __init(self): super(CoolModel, self).__init__() # not the best model... self.l1 = torch.nn.Linear(28 * 28, 10) def forward(self, x): return torch.relu(self.l1(x)) def my_loss(self, y_hat, y): return F.cross_entropy(y_hat, y) def training_step(self, batch, batch_nb): x, y = batch y_hat = self.forward(x) return {'tng_loss': self.my_loss(y_hat, y)} def validation_step(self, batch, batch_nb): x, y = batch y_hat = self.forward(x) return {'val_loss': self.my_loss(y_hat, y)} def validation_end(self, outputs): avg_loss = torch.stack([x for x in outputs['val_loss']]).mean() return avg_loss def configure_optimizers(self): return [torch.optim.Adam(self.parameters(), lr=0.02)] @ptl.data_loader def tng_dataloader(self): return DataLoader(MNIST('path/to/save', train=True), batch_size=32) @ptl.data_loader def val_dataloader(self): return DataLoader(MNIST('path/to/save', train=False), batch_size=32) @ptl.data_loader def test_dataloader(self): return DataLoader(MNIST('path/to/save', train=False), batch_size=32) def get_model(): # set up model with these hyperparams root_dir = os.path.dirname(os.path.realpath(__file__)) hparams = Namespace(**{'drop_prob': 0.2, 'batch_size': 32, 'in_features': 28*28, 'learning_rate': 0.001*8, 'optimizer_name': 'adam', 'data_root': os.path.join(root_dir, 'mnist'), 'out_features': 10, 'hidden_dim': 1000}) model = LightningTemplateModel(hparams) return model, hparams def get_exp(debug=True): # set up exp object without actually saving logs root_dir = os.path.dirname(os.path.realpath(__file__)) exp = Experiment(debug=debug, save_dir=root_dir, name='tests_tt_dir') return exp def init_save_dir(): root_dir = os.path.dirname(os.path.realpath(__file__)) save_dir = os.path.join(root_dir, 'save_dir') if os.path.exists(save_dir): shutil.rmtree(save_dir) os.makedirs(save_dir, exist_ok=True) return save_dir def clear_save_dir(): root_dir = os.path.dirname(os.path.realpath(__file__)) save_dir = os.path.join(root_dir, 'save_dir') if os.path.exists(save_dir): shutil.rmtree(save_dir) def load_model(exp, save_dir): # load trained model tags_path = exp.get_data_path(exp.name, exp.version) tags_path = os.path.join(tags_path, 'meta_tags.csv') checkpoints = [x for x in os.listdir(save_dir) if '.ckpt' in x] weights_dir = os.path.join(save_dir, checkpoints[0]) trained_model = LightningTemplateModel.load_from_metrics(weights_path=weights_dir, tags_csv=tags_path, on_gpu=True) assert trained_model is not None, 'loading model failed' return trained_model def run_prediction(dataloader, trained_model): # run prediction on 1 batch for batch in dataloader: break x, y = batch x = x.view(x.size(0), -1) y_hat = trained_model(x) # acc labels_hat = torch.argmax(y_hat, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) val_acc = torch.tensor(val_acc) val_acc = val_acc.item() print(val_acc) assert val_acc > 0.70, f'this model is expected to get > 0.7 in test set (it got {val_acc})' def main(): save_dir = init_save_dir() # exp file to get meta exp = get_exp(False) exp.save() # exp file to get weights checkpoint = ModelCheckpoint(save_dir) trainer = Trainer( experiment=exp, checkpoint_callback=checkpoint, progress_bar=True, max_nb_epochs=1, gpus=[0, 1], distributed_backend='dp', ) model = CoolModel() result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'amp + ddp model failed to complete' # test model loading pretrained_model = load_model(exp, save_dir) # test model preds run_prediction(model.test_dataloader, pretrained_model) clear_save_dir() if __name__ == '__main__': main()