# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test deprecated functionality which will be removed in v1.5.0""" from unittest import mock import pytest import torch from torch import optim from pytorch_lightning import Callback, Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.profiler import AdvancedProfiler, BaseProfiler, PyTorchProfiler, SimpleProfiler from pytorch_lightning.trainer.callback_hook import warning_cache as callback_warning_cache from tests.deprecated_api import no_deprecated_call from tests.helpers import BoringModel from tests.helpers.utils import no_warning_call def test_v1_5_0_model_checkpoint_save_checkpoint(): model_ckpt = ModelCheckpoint() model_ckpt.save_function = lambda *_, **__: None with pytest.deprecated_call(match="ModelCheckpoint.save_checkpoint` signature has changed"): model_ckpt.save_checkpoint(Trainer(), object()) @mock.patch('pytorch_lightning.loggers.wandb.wandb') def test_v1_5_0_wandb_unused_sync_step(tmpdir): with pytest.deprecated_call(match=r"v1.2.1 and will be removed in v1.5"): WandbLogger(sync_step=True) def test_v1_5_0_old_callback_on_save_checkpoint(tmpdir): class OldSignature(Callback): def on_save_checkpoint(self, trainer, pl_module): # noqa ... model = BoringModel() trainer_kwargs = { "default_root_dir": tmpdir, "checkpoint_callback": False, "max_epochs": 1, } filepath = tmpdir / "test.ckpt" trainer = Trainer(**trainer_kwargs, callbacks=[OldSignature()]) trainer.fit(model) with pytest.deprecated_call(match="old signature will be removed in v1.5"): trainer.save_checkpoint(filepath) class NewSignature(Callback): def on_save_checkpoint(self, trainer, pl_module, checkpoint): ... class ValidSignature1(Callback): def on_save_checkpoint(self, trainer, *args): ... class ValidSignature2(Callback): def on_save_checkpoint(self, *args): ... trainer.callbacks = [NewSignature(), ValidSignature1(), ValidSignature2()] with no_warning_call(DeprecationWarning): trainer.save_checkpoint(filepath) def test_v1_5_0_legacy_profiler_argument(): with pytest.deprecated_call(match="renamed to `record_functions` in v1.3"): PyTorchProfiler(profiled_functions=[]) def test_v1_5_0_running_sanity_check(): trainer = Trainer() with pytest.deprecated_call(match='has been renamed to `Trainer.sanity_checking`'): assert not trainer.running_sanity_check def test_old_training_step_signature_with_opt_idx_manual_opt(tmpdir): class OldSignatureModel(BoringModel): def __init__(self): super().__init__() self.automatic_optimization = False def training_step(self, batch, batch_idx, optimizer_idx): assert optimizer_idx is not None return super().training_step(batch, batch_idx) def configure_optimizers(self): return [optim.SGD(self.parameters(), lr=1e-2), optim.SGD(self.parameters(), lr=1e-2)] model = OldSignatureModel() trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=2) with pytest.deprecated_call(match="`training_step` .* `optimizer_idx` .* manual .* will be removed in v1.5"): trainer.fit(model) def test_v1_5_0_model_checkpoint_period(tmpdir): with no_warning_call(DeprecationWarning): ModelCheckpoint(dirpath=tmpdir) with pytest.deprecated_call(match="is deprecated in v1.3 and will be removed in v1.5"): ModelCheckpoint(dirpath=tmpdir, period=1) def test_v1_5_0_old_on_validation_epoch_end(tmpdir): callback_warning_cache.clear() class OldSignature(Callback): def on_validation_epoch_end(self, trainer, pl_module): # noqa ... model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, callbacks=OldSignature()) with pytest.deprecated_call(match="old signature will be removed in v1.5"): trainer.fit(model) class OldSignatureModel(BoringModel): def on_validation_epoch_end(self): # noqa ... model = OldSignatureModel() with pytest.deprecated_call(match="old signature will be removed in v1.5"): trainer.fit(model) callback_warning_cache.clear() class NewSignature(Callback): def on_validation_epoch_end(self, trainer, pl_module, outputs): ... trainer.callbacks = [NewSignature()] with no_deprecated_call(match="`Callback.on_validation_epoch_end` signature has changed in v1.3."): trainer.fit(model) class NewSignatureModel(BoringModel): def on_validation_epoch_end(self, outputs): ... model = NewSignatureModel() with no_deprecated_call(match="`ModelHooks.on_validation_epoch_end` signature has changed in v1.3."): trainer.fit(model) def test_v1_5_0_old_on_test_epoch_end(tmpdir): callback_warning_cache.clear() class OldSignature(Callback): def on_test_epoch_end(self, trainer, pl_module): # noqa ... model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, callbacks=OldSignature()) with pytest.deprecated_call(match="old signature will be removed in v1.5"): trainer.test(model) class OldSignatureModel(BoringModel): def on_test_epoch_end(self): # noqa ... model = OldSignatureModel() with pytest.deprecated_call(match="old signature will be removed in v1.5"): trainer.test(model) callback_warning_cache.clear() class NewSignature(Callback): def on_test_epoch_end(self, trainer, pl_module, outputs): ... trainer.callbacks = [NewSignature()] with no_deprecated_call(match="`Callback.on_test_epoch_end` signature has changed in v1.3."): trainer.test(model) class NewSignatureModel(BoringModel): def on_test_epoch_end(self, outputs): ... model = NewSignatureModel() with no_deprecated_call(match="`ModelHooks.on_test_epoch_end` signature has changed in v1.3."): trainer.test(model) @pytest.mark.parametrize("cls", (BaseProfiler, SimpleProfiler, AdvancedProfiler, PyTorchProfiler)) def test_v1_5_0_profiler_output_filename(tmpdir, cls): filepath = str(tmpdir / "test.txt") with pytest.deprecated_call(match="`output_filename` parameter has been removed"): profiler = cls(output_filename=filepath) assert profiler.dirpath == tmpdir assert profiler.filename == "test" def test_v1_5_0_trainer_training_trick_mixin(tmpdir): model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, checkpoint_callback=False, logger=False) trainer.fit(model) with pytest.deprecated_call(match="is deprecated in v1.3 and will be removed in v1.5"): trainer.print_nan_gradients() dummy_loss = torch.tensor(1.0) with pytest.deprecated_call(match="is deprecated in v1.3 and will be removed in v1.5"): trainer.detect_nan_tensors(dummy_loss)