# PYTORCH-LIGHTNING DOCUMENTATION ###### Quick start - [Define a LightningModule](Pytorch-Lightning/LightningModule/) - Set up the trainer ###### Quick start examples - CPU example - Single GPU example - Multi-gpu example - SLURM cluster grid search example ###### Training loop - Accumulate gradients - Check GPU usage - Check which gradients are nan - Check validation every n epochs - Display metrics in progress bar - Force training for min or max epochs - Inspect gradient norms - Hooks - Learning rate annealing - Make model overfit on subset of data - Multiple optimizers (like GANs) - Set how much of the training set to check (1-100%) - training_step function ###### Validation loop - Display metrics in progress bar - hooks - Set how much of the validation set to check (1-100%) - Set validation check frequency within 1 training epoch (1-100%) - validation_step function - Why does validation run first for 5 steps? ###### Distributed training - Single-gpu - Multi-gpu - Multi-node - 16-bit mixed precision ###### Checkpointing - Model saving - Model loading ###### Computing cluster (SLURM) - Automatic checkpointing - Automatic saving, loading - Running grid search on a cluster - Walltime auto-resubmit