""" Runs a model on a single node across N-gpus. """ import os import sys import numpy as np from time import sleep import torch from test_tube import HyperOptArgumentParser, Experiment, SlurmCluster from pytorch_lightning.models.trainer import Trainer from pytorch_lightning.utils.arg_parse import add_default_args from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint SEED = 2334 torch.manual_seed(SEED) np.random.seed(SEED) from lightning_module_template import LightningTemplateModel def main(hparams): """ Main training routine specific for this project :param hparams: :return: """ # ------------------------ # 1 INIT LIGHTNING MODEL # ------------------------ print('loading model...') model = LightningTemplateModel(hparams) print('model built') # ------------------------ # 2 INIT TEST TUBE EXP # ------------------------ # init experiment exp = Experiment( name=hyperparams.experiment_name, save_dir=hyperparams.test_tube_save_path, autosave=False, description='test demo' ) exp.argparse(hparams) exp.save() # ------------------------ # 3 DEFINE CALLBACKS # ------------------------ model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version) early_stop = EarlyStopping( monitor='val_acc', patience=3, verbose=True, mode='max' ) checkpoint = ModelCheckpoint( filepath=model_save_path, save_best_only=True, verbose=True, monitor='val_loss', mode='min' ) # ------------------------ # 4 INIT TRAINER # ------------------------ trainer = Trainer( experiment=exp, checkpoint_callback=checkpoint, early_stop_callback=early_stop, gpus=hparams.gpus, use_amp=True ) # ------------------------ # 5 START TRAINING # ------------------------ trainer.fit(model) if __name__ == '__main__': # dirs root_dir = os.path.dirname(os.path.realpath(__file__)) demo_log_dir = os.path.join(root_dir, 'pt_lightning_demo_logs') checkpoint_dir = os.path.join(demo_log_dir, 'model_weights') test_tube_dir = os.path.join(demo_log_dir, 'test_tube_data') # although we user hyperOptParser, we are using it only as argparse right now parent_parser = HyperOptArgumentParser(strategy='grid_search', add_help=False) # gpu args parent_parser.add_argument('--gpus', type=str, default='-1', help='how many gpus to use in the node. -1 uses all the gpus on the node') parent_parser.add_argument('--test_tube_save_path', type=str, default=test_tube_dir, help='where to save logs') parent_parser.add_argument('--model_save_path', type=str, default=checkpoint_dir, help='where to save model') parent_parser.add_argument('--experiment_name', type=str, default='pt_lightning_exp_a', help='test tube exp name') # allow model to overwrite or extend args parser = LightningTemplateModel.add_model_specific_args(parent_parser, root_dir) hyperparams = parser.parse_args() # --------------------- # RUN TRAINING # --------------------- # run on HPC cluster print(f'RUNNING INTERACTIVE MODE ON GPUS. gpu ids: {hyperparams.gpus}') main(hyperparams)