# Changelog All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/). ## [1.6.0] - 2022-MM-DD ### Added - Add new `DETAIL` log level to provide useful logs for improving monitoring and debugging of batch jobs - Added a flag `SLURMEnvironment(auto_requeue=True|False)` to control whether Lightning handles the requeuing ([#10601](https://github.com/PyTorchLightning/pytorch-lightning/pull/10601)) - Fault Tolerant Manual * Add `_SupportsStateDict` protocol to detect if classes are stateful ([#10646](https://github.com/PyTorchLightning/pytorch-lightning/pull/10646)) * Add `_FaultTolerantMode` enum used to track different supported fault tolerant modes ([#10645](https://github.com/PyTorchLightning/pytorch-lightning/pull/10645)) * Add a `_rotate_worker_indices` utility to reload the state according the latest worker ([#10647](https://github.com/PyTorchLightning/pytorch-lightning/pull/10647)) * Add stateful workers ([#10674](https://github.com/PyTorchLightning/pytorch-lightning/pull/10674)) * Add an utility to collect the states across processes ([#10639](https://github.com/PyTorchLightning/pytorch-lightning/pull/10639)) * Add logic to reload the states across data loading components ([#10699](https://github.com/PyTorchLightning/pytorch-lightning/pull/10699)) * Cleanup some fault tolerant utilities ([#10703](https://github.com/PyTorchLightning/pytorch-lightning/pull/10703)) * Enable Fault Tolerant Manual Training ([#10707](https://github.com/PyTorchLightning/pytorch-lightning/pull/10707)) * Broadcast the `_terminate_gracefully` to all processes and add support for DDP ([#10638](https://github.com/PyTorchLightning/pytorch-lightning/pull/10638)) - Added support for re-instantiation of custom (subclasses of) `DataLoaders` returned in the `*_dataloader()` methods, i.e., automatic replacement of samplers now works with custom types of `DataLoader` ([#10680](https://github.com/PyTorchLightning/pytorch-lightning/pull/10639)) - Added a function to validate if fault tolerant training is supported. ([#10465](https://github.com/PyTorchLightning/pytorch-lightning/pull/10465)) - Show a better error message when a custom `DataLoader` implementation is not well implemented and we need to reconstruct it ([#10719](https://github.com/PyTorchLightning/pytorch-lightning/pull/10719)) - Show a better error message when frozen dataclass is used as a batch ([#10927](https://github.com/PyTorchLightning/pytorch-lightning/pull/10927)) - Save the `Loop`'s state by default in the checkpoint ([#10784](https://github.com/PyTorchLightning/pytorch-lightning/pull/10784)) - Added `Loop.replace` to easily switch one loop for another ([#10324](https://github.com/PyTorchLightning/pytorch-lightning/pull/10324)) - Added support for `--lr_scheduler=ReduceLROnPlateau` to the `LightningCLI` ([#10860](https://github.com/PyTorchLightning/pytorch-lightning/pull/10860)) - Added `LightningCLI.configure_optimizers` to override the `configure_optimizers` return value ([#10860](https://github.com/PyTorchLightning/pytorch-lightning/pull/10860)) - Added a warning that shows when `max_epochs` in the `Trainer` is not set ([#10700](https://github.com/PyTorchLightning/pytorch-lightning/pull/10700)) - Added support for returning a single Callback from `LightningModule.configure_callbacks` without wrapping it into a list ([#11060](https://github.com/PyTorchLightning/pytorch-lightning/pull/11060)) - Added `console_kwargs` for `RichProgressBar` to initialize inner Console ([#10875](https://github.com/PyTorchLightning/pytorch-lightning/pull/10875)) - Added a `PrecisionPlugin.teardown` method ([#10990](https://github.com/PyTorchLightning/pytorch-lightning/pull/10990)) - Added `LightningModule.lr_scheduler_step` ([#10249](https://github.com/PyTorchLightning/pytorch-lightning/pull/10249)) - Added `opt_idx` to scheduler config if not assigned by user ([#11247](https://github.com/PyTorchLightning/pytorch-lightning/pull/11247)) - Teardown the active loop and strategy on exception ([#11620](https://github.com/PyTorchLightning/pytorch-lightning/pull/11620)) - Added a `MisconfigurationException` if user provided `opt_idx` in scheduler config doesn't match with actual optimizer index of its respective optimizer ([#11247](https://github.com/PyTorchLightning/pytorch-lightning/pull/11247)) ### Changed - Set the `prog_bar` flag to False in `LightningModule.log_grad_norm` ([#11472](https://github.com/PyTorchLightning/pytorch-lightning/pull/11472)) - Raised exception in `init_dist_connection()` when torch distibuted is not available ([#10418](https://github.com/PyTorchLightning/pytorch-lightning/pull/10418)) - The `monitor` argument in the `EarlyStopping` callback is no longer optional ([#10328](https://github.com/PyTorchLightning/pytorch-lightning/pull/10328)) - Do not fail if batch size could not be inferred for logging when using DeepSpeed ([#10438](https://github.com/PyTorchLightning/pytorch-lightning/pull/10438)) - Raised `MisconfigurationException` when `enable_progress_bar=False` and a progress bar instance has been passed in the callback list ([#10520](https://github.com/PyTorchLightning/pytorch-lightning/pull/10520)) - Moved `trainer.connectors.env_vars_connector._defaults_from_env_vars` to `utilities.argsparse._defaults_from_env_vars` ([#10501](https://github.com/PyTorchLightning/pytorch-lightning/pull/10501)) - Changes in `LightningCLI` required for the new major release of jsonargparse v4.0.0 ([#10426](https://github.com/PyTorchLightning/pytorch-lightning/pull/10426)) - Renamed `refresh_rate_per_second` parameter to `refresh_rate` for `RichProgressBar` signature ([#10497](https://github.com/PyTorchLightning/pytorch-lightning/pull/10497)) - Moved ownership of the `PrecisionPlugin` into `TrainingTypePlugin` and updated all references ([#10570](https://github.com/PyTorchLightning/pytorch-lightning/pull/10570)) - Fault Tolerant relies on `signal.SIGTERM` to gracefully exit instead of `signal.SIGUSR1` ([#10605](https://github.com/PyTorchLightning/pytorch-lightning/pull/10605)) - `Loop.restarting=...` now sets the value recursively for all subloops ([#11442](https://github.com/PyTorchLightning/pytorch-lightning/pull/11442)) - Raised an error if the `batch_size` cannot be inferred from the current batch if it contained a string or was a custom batch object ([#10541](https://github.com/PyTorchLightning/pytorch-lightning/pull/10541)) - The validation loop is now disabled when `overfit_batches > 0` is set in the Trainer ([#9709](https://github.com/PyTorchLightning/pytorch-lightning/pull/9709)) - Moved optimizer related logics from `Accelerator` to `TrainingTypePlugin` ([#10596](https://github.com/PyTorchLightning/pytorch-lightning/pull/10596)) - Moved ownership of the lightning optimizers from the `Trainer` to the `Strategy` ([#11444](https://github.com/PyTorchLightning/pytorch-lightning/pull/11444)) - Moved `batch_to_device` method from `Accelerator` to `TrainingTypePlugin` ([#10649](https://github.com/PyTorchLightning/pytorch-lightning/pull/10649)) - The `DDPSpawnPlugin` no longer overrides the `post_dispatch` plugin hook ([#10034](https://github.com/PyTorchLightning/pytorch-lightning/pull/10034)) - Integrate the progress bar implementation with progress tracking ([#11213](https://github.com/PyTorchLightning/pytorch-lightning/pull/11213)) - The `LightningModule.{add_to_queue,get_from_queue}` hooks no longer get a `torch.multiprocessing.SimpleQueue` and instead receive a list based queue ([#10034](https://github.com/PyTorchLightning/pytorch-lightning/pull/10034)) - Changed `training_step`, `validation_step`, `test_step` and `predict_step` method signatures in `Accelerator` and updated input from caller side ([#10908](https://github.com/PyTorchLightning/pytorch-lightning/pull/10908)) - Changed the name of the temporary checkpoint that the `DDPSpawnPlugin` and related plugins save ([#10934](https://github.com/PyTorchLightning/pytorch-lightning/pull/10934)) - `LoggerCollection` returns only unique logger names and versions ([#10976](https://github.com/PyTorchLightning/pytorch-lightning/pull/10976)) - Redesigned process creation for spawn-based plugins (`DDPSpawnPlugin`, `TPUSpawnPlugin`, etc.) ([#10896](https://github.com/PyTorchLightning/pytorch-lightning/pull/10896)) * All spawn-based plugins now spawn processes immediately upon calling `Trainer.{fit,validate,test,predict}` * The hooks/callbacks `prepare_data`, `setup`, `configure_sharded_model` and `teardown` now run under initialized process group for spawn-based plugins just like their non-spawn counterparts * Some configuration errors that were previously raised as `MisconfigurationException`s will now be raised as `ProcessRaisedException` (torch>=1.8) or as `Exception` (torch<1.8) * Removed the `TrainingTypePlugin.pre_dispatch()` method and merged it with `TrainingTypePlugin.setup()` ([#11137](https://github.com/PyTorchLightning/pytorch-lightning/pull/11137)) - Changed profiler to index and display the names of the hooks with a new pattern []. ([#11026](https://github.com/PyTorchLightning/pytorch-lightning/pull/11026)) - Changed `batch_to_device` entry in profiling from stage-specific to generic, to match profiling of other hooks ([#11031](https://github.com/PyTorchLightning/pytorch-lightning/pull/11031)) - Changed the info message for finalizing ddp-spawn worker processes to a debug-level message ([#10864](https://github.com/PyTorchLightning/pytorch-lightning/pull/10864)) - Removed duplicated file extension when uploading model checkpoints with `NeptuneLogger` ([#11015](https://github.com/PyTorchLightning/pytorch-lightning/pull/11015)) - Changed `LSFEnvironment` to use `LSB_DJOB_RANKFILE` environment variable instead of `LSB_HOSTS` for determining node rank and main address ([#10825](https://github.com/PyTorchLightning/pytorch-lightning/pull/10825)) - Removed `__getstate__` and `__setstate__` of `RichProgressBar` ([#11100](https://github.com/PyTorchLightning/pytorch-lightning/pull/11100)) - The `DDPPlugin` and `DDPSpawnPlugin` and their subclasses now remove the `SyncBatchNorm` wrappers in `teardown()` to enable proper support at inference after fitting ([#11078](https://github.com/PyTorchLightning/pytorch-lightning/pull/11078)) - Moved ownership of the `Accelerator` instance to the `TrainingTypePlugin`; all training-type plugins now take an optional parameter `accelerator` ([#11022](https://github.com/PyTorchLightning/pytorch-lightning/pull/11022)) - Renamed the `TrainingTypePlugin` to `Strategy` ([#11120](https://github.com/PyTorchLightning/pytorch-lightning/pull/11120)) * Renamed the `ParallelPlugin` to `ParallelStrategy` ([#11123](https://github.com/PyTorchLightning/pytorch-lightning/pull/11123)) * Renamed the `DataParallelPlugin` to `DataParallelStrategy` ([#11183](https://github.com/PyTorchLightning/pytorch-lightning/pull/11183)) * Renamed the `DDPPlugin` to `DDPStrategy` ([#11142](https://github.com/PyTorchLightning/pytorch-lightning/pull/11142)) * Renamed the `DDP2Plugin` to `DDP2Strategy` ([#11185](https://github.com/PyTorchLightning/pytorch-lightning/pull/11185)) * Renamed the `DDPShardedPlugin` to `DDPShardedStrategy` ([#11186](https://github.com/PyTorchLightning/pytorch-lightning/pull/11186)) * Renamed the `DDPFullyShardedPlugin` to `DDPFullyShardedStrategy` ([#11143](https://github.com/PyTorchLightning/pytorch-lightning/pull/11143)) * Renamed the `DDPSpawnPlugin` to `DDPSpawnStrategy` ([#11145](https://github.com/PyTorchLightning/pytorch-lightning/pull/11145)) * Renamed the `DDPSpawnShardedPlugin` to `DDPSpawnShardedStrategy` ([#11210](https://github.com/PyTorchLightning/pytorch-lightning/pull/11210)) * Renamed the `DeepSpeedPlugin` to `DeepSpeedStrategy` ([#11194](https://github.com/PyTorchLightning/pytorch-lightning/pull/11194)) * Renamed the `HorovodPlugin` to `HorovodStrategy` ([#11195](https://github.com/PyTorchLightning/pytorch-lightning/pull/11195)) * Renamed the `TPUSpawnPlugin` to `TPUSpawnStrategy` ([#11190](https://github.com/PyTorchLightning/pytorch-lightning/pull/11190)) * Renamed the `IPUPlugin` to `IPUStrategy` ([#11193](https://github.com/PyTorchLightning/pytorch-lightning/pull/11193)) * Renamed the `SingleDevicePlugin` to `SingleDeviceStrategy` ([#11182](https://github.com/PyTorchLightning/pytorch-lightning/pull/11182)) * Renamed the `SingleTPUPlugin` to `SingleTPUStrategy` ([#11182](https://github.com/PyTorchLightning/pytorch-lightning/pull/11182)) * Renamed the `TrainingTypePluginsRegistry` to `StrategyRegistry` ([#11233](https://github.com/PyTorchLightning/pytorch-lightning/pull/11233)) - Marked the `ResultCollection`, `ResultMetric`, and `ResultMetricCollection` classes as protected ([#11130](https://github.com/PyTorchLightning/pytorch-lightning/pull/11130)) - The epoch start/end hooks are now called by the `FitLoop` instead of the `TrainingEpochLoop` ([#11201](https://github.com/PyTorchLightning/pytorch-lightning/pull/11201)) - DeepSpeed does not require lightning module zero 3 partitioning ([#10655](https://github.com/PyTorchLightning/pytorch-lightning/pull/10655)) - Deprecated `training_type_plugin` property in favor of `strategy` in `Trainer` and updated the references ([#11141](https://github.com/PyTorchLightning/pytorch-lightning/pull/11141)) - Moved `Strategy` classes to the `strategies` directory ([#11226](https://github.com/PyTorchLightning/pytorch-lightning/pull/11226)) - Renamed `training_type_plugin` file to `strategy` ([#11239](https://github.com/PyTorchLightning/pytorch-lightning/pull/11239)) - Changed `DeviceStatsMonitor` to group metrics based on the logger's `group_separator` ([#11254](https://github.com/PyTorchLightning/pytorch-lightning/pull/11254)) - Raised `UserWarning` if evaluation is triggered with `best` ckpt and trainer is configured with multiple checkpoint callbacks ([#11274](https://github.com/PyTorchLightning/pytorch-lightning/pull/11274)) - `Trainer.logged_metrics` now always contains scalar tensors, even when a Python scalar was logged ([#11270](https://github.com/PyTorchLightning/pytorch-lightning/pull/11270)) - The tuner now uses the checkpoint connector to copy and restore its state ([#11518](https://github.com/PyTorchLightning/pytorch-lightning/pull/11518)) - Changed `MisconfigurationException` to `ModuleNotFoundError` when `rich` isn't available ([#11360](https://github.com/PyTorchLightning/pytorch-lightning/pull/11360)) - Sorted `SimpleProfiler(extended=False)` summary based on mean duration for each hook ([#11671](https://github.com/PyTorchLightning/pytorch-lightning/pull/11671)) ### Deprecated - Deprecated `ClusterEnvironment.master_{address,port}` in favor of `ClusterEnvironment.main_{address,port}` ([#10103](https://github.com/PyTorchLightning/pytorch-lightning/pull/10103)) - Deprecated `DistributedType` in favor of `_StrategyType` ([#10505](https://github.com/PyTorchLightning/pytorch-lightning/pull/10505)) - Deprecated the `precision_plugin` constructor argument from `Accelerator` ([#10570](https://github.com/PyTorchLightning/pytorch-lightning/pull/10570)) - Deprecated `DeviceType` in favor of `_AcceleratorType` ([#10503](https://github.com/PyTorchLightning/pytorch-lightning/pull/10503)) - Deprecated the property `Trainer.slurm_job_id` in favor of the new `SLURMEnvironment.job_id()` method ([#10622](https://github.com/PyTorchLightning/pytorch-lightning/pull/10622)) - Deprecated the access to the attribute `IndexBatchSamplerWrapper.batch_indices` in favor of `IndexBatchSamplerWrapper.seen_batch_indices` ([#10870](https://github.com/PyTorchLightning/pytorch-lightning/pull/10870)) - Deprecated `on_init_start` and `on_init_end` callback hooks ([#10940](https://github.com/PyTorchLightning/pytorch-lightning/pull/10940)) - Deprecated `Trainer.call_hook` in favor of `Trainer._call_callback_hooks`, `Trainer._call_lightning_module_hook`, `Trainer._call_ttp_hook`, and `Trainer._call_accelerator_hook` ([#10979](https://github.com/PyTorchLightning/pytorch-lightning/pull/10979)) - Deprecated `TrainingTypePlugin.post_dispatch` in favor of `TrainingTypePlugin.teardown` ([#10939](https://github.com/PyTorchLightning/pytorch-lightning/pull/10939)) - Deprecated `ModelIO.on_hpc_{save/load}` in favor of `CheckpointHooks.on_{save/load}_checkpoint` ([#10911](https://github.com/PyTorchLightning/pytorch-lightning/pull/10911)) - Deprecated `Trainer.run_stage` in favor of `Trainer.{fit,validate,test,predict}` ([#11000](https://github.com/PyTorchLightning/pytorch-lightning/pull/11000)) - Deprecated `Trainer.lr_schedulers` in favor of `Trainer.lr_scheduler_configs` which returns a list of dataclasses instead of dictionaries ([#11443](https://github.com/PyTorchLightning/pytorch-lightning/pull/11443)) - Deprecated `Trainer.verbose_evaluate` in favor of `EvaluationLoop(verbose=...)` ([#10931](https://github.com/PyTorchLightning/pytorch-lightning/pull/10931)) - Deprecated `Trainer.should_rank_save_checkpoint` Trainer property ([#11068](https://github.com/PyTorchLightning/pytorch-lightning/pull/11068)) - Deprecated `Trainer.lightning_optimizers` ([#11444](https://github.com/PyTorchLightning/pytorch-lightning/pull/11444)) - Deprecated `TrainerOptimizersMixin` and moved functionality to `core/optimizer.py`([#11155](https://github.com/PyTorchLightning/pytorch-lightning/pull/11155)) - Deprecated `TrainerCallbackHookMixin` ([#11148](https://github.com/PyTorchLightning/pytorch-lightning/pull/11148)) - Deprecated `TrainerDataLoadingMixin` and moved functionality to `Trainer` and `DataConnector` ([#11282](https://github.com/PyTorchLightning/pytorch-lightning/pull/11282)) - Deprecated function `pytorch_lightning.callbacks.device_stats_monitor.prefix_metric_keys` ([#11254](https://github.com/PyTorchLightning/pytorch-lightning/pull/11254)) ### Removed - Removed deprecated parameter `method` in `pytorch_lightning.utilities.model_helpers.is_overridden` ([#10507](https://github.com/PyTorchLightning/pytorch-lightning/pull/10507)) - Remove deprecated method `ClusterEnvironment.creates_children` ([#10339](https://github.com/PyTorchLightning/pytorch-lightning/pull/10339)) - Removed deprecated `TrainerModelHooksMixin.is_function_implemented` and `TrainerModelHooksMixin.has_arg` ([#10322](https://github.com/PyTorchLightning/pytorch-lightning/pull/10322)) - Removed deprecated `pytorch_lightning.utilities.device_dtype_mixin.DeviceDtypeModuleMixin` in favor of `pytorch_lightning.core.mixins.device_dtype_mixin.DeviceDtypeModuleMixin` ([#10442](https://github.com/PyTorchLightning/pytorch-lightning/pull/10442)) - Removed deprecated `LightningModule.loaded_optimizer_states_dict` property ([#10346](https://github.com/PyTorchLightning/pytorch-lightning/pull/10346)) - Removed deprecated `Trainer.fit(train_dataloader=)`, `Trainer.validate(val_dataloaders=)`, and `Trainer.test(test_dataloader=)` ([#10325](https://github.com/PyTorchLightning/pytorch-lightning/pull/10325)) - Removed deprecated `has_prepared_data`, `has_setup_fit`, `has_setup_validate`, `has_setup_test`, `has_setup_predict`, `has_teardown_fit`, `has_teardown_validate`, `has_teardown_test` and `has_teardown_predict` datamodule lifecycle properties ([#10350](https://github.com/PyTorchLightning/pytorch-lightning/pull/10350)) - Removed deprecated `every_n_val_epochs` parameter of ModelCheckpoint ([#10366](https://github.com/PyTorchLightning/pytorch-lightning/pull/10366)) - Removed deprecated `import pytorch_lightning.profiler.profilers` in favor of `import pytorch_lightning.profiler` ([#10443](https://github.com/PyTorchLightning/pytorch-lightning/pull/10443)) - Removed deprecated property `configure_slurm_dpp` from accelerator connector ([#10370](https://github.com/PyTorchLightning/pytorch-lightning/pull/10370)) - Removed deprecated arguments `num_nodes` and `sync_batchnorm` from `DDPPlugin`, `DDPSpawnPlugin`, `DeepSpeedPlugin` ([#10357](https://github.com/PyTorchLightning/pytorch-lightning/pull/10357)) - Removed deprecated property `is_slurm_managing_tasks` from AcceleratorConnector ([#10353](https://github.com/PyTorchLightning/pytorch-lightning/pull/10353)) - Removed deprecated `LightningModule.log(tbptt_reduce_fx, tbptt_reduce_token, sync_dist_op)` ([#10423](https://github.com/PyTorchLightning/pytorch-lightning/pull/10423)) - Removed deprecated `Plugin.task_idx` ([#10441](https://github.com/PyTorchLightning/pytorch-lightning/pull/10441)) - Removed deprecated method `master_params` from PrecisionPlugin ([#10372](https://github.com/PyTorchLightning/pytorch-lightning/pull/10372)) - Removed the automatic detachment of "extras" returned from `training_step`. For example, `return {'loss': ..., 'foo': foo.detach()}` will now be necessary if `foo` has gradients which you do not want to store ([#10424](https://github.com/PyTorchLightning/pytorch-lightning/pull/10424)) - Removed deprecated passthrough methods and properties from `Accelerator` base class: * ([#10403](https://github.com/PyTorchLightning/pytorch-lightning/pull/10403)) * ([#10448](https://github.com/PyTorchLightning/pytorch-lightning/pull/10448)) - Removed deprecated signature for `transfer_batch_to_device` hook. The new argument `dataloader_idx` is now required ([#10480](https://github.com/PyTorchLightning/pytorch-lightning/pull/10480)) - Removed deprecated `utilities.distributed.rank_zero_{warn/deprecation}` ([#10451](https://github.com/PyTorchLightning/pytorch-lightning/pull/10451)) - Removed deprecated `mode` argument from `ModelSummary` class ([#10449](https://github.com/PyTorchLightning/pytorch-lightning/pull/10449)) - Removed deprecated `Trainer.train_loop` property in favor of `Trainer.fit_loop` ([#10482](https://github.com/PyTorchLightning/pytorch-lightning/pull/10482)) - Removed deprecated `Trainer.train_loop` property in favor of `Trainer.fit_loop` ([#10482](https://github.com/PyTorchLightning/pytorch-lightning/pull/10482)) - Removed deprecated `disable_validation` property from Trainer ([#10450](https://github.com/PyTorchLightning/pytorch-lightning/pull/10450)) - Removed deprecated `CheckpointConnector.hpc_load` property in favor of `CheckpointConnector.restore` ([#10525](https://github.com/PyTorchLightning/pytorch-lightning/pull/10525)) - Removed deprecated `reload_dataloaders_every_epoch` from `Trainer` in favour of `reload_dataloaders_every_n_epochs` ([#10481](https://github.com/PyTorchLightning/pytorch-lightning/pull/10481)) - Removed the `precision_plugin` attribute from `Accelerator` in favor of its equivalent attribute `precision_plugin` in the `TrainingTypePlugin` ([#10570](https://github.com/PyTorchLightning/pytorch-lightning/pull/10570)) - Removed `DeepSpeedPlugin.{precision,amp_type,amp_level}` properties ([#10657](https://github.com/PyTorchLightning/pytorch-lightning/pull/10657)) - Removed argument `return_result` from the `DDPSpawnPlugin.spawn()` method ([#10867](https://github.com/PyTorchLightning/pytorch-lightning/pull/10867)) - Removed the property `TrainingTypePlugin.results` and corresponding properties in subclasses ([#10034](https://github.com/PyTorchLightning/pytorch-lightning/pull/10034)) - Removed the `mp_queue` attribute from `DDPSpawnPlugin` and `TPUSpawnPlugin` ([#10034](https://github.com/PyTorchLightning/pytorch-lightning/pull/10034)) - Removed unnecessary `_move_optimizer_state` method overrides from `TPUSpawnPlugin` and `SingleTPUPlugin` ([#10849](https://github.com/PyTorchLightning/pytorch-lightning/pull/10849)) - Removed `should_rank_save_checkpoint` property from `TrainingTypePlugin` ([#11070](https://github.com/PyTorchLightning/pytorch-lightning/pull/11070)) - Removed `model_sharded_context` method from `Accelerator` ([#10886](https://github.com/PyTorchLightning/pytorch-lightning/pull/10886)) - Removed method `pre_dispatch` from the `PrecisionPlugin` ([#10887](https://github.com/PyTorchLightning/pytorch-lightning/pull/10887)) - Removed method `setup_optimizers_in_pre_dispatch` from the `strategies` and achieve the same logic in `setup` and `pre_dispatch` methods ([#10906](https://github.com/PyTorchLightning/pytorch-lightning/pull/10906)) - Removed methods `pre_dispatch`, `dispatch` and `post_dispatch` from the `Accelerator` ([#10885](https://github.com/PyTorchLightning/pytorch-lightning/pull/10885)) - Removed method `training_step`, `test_step`, `validation_step` and `predict_step` from the `Accelerator` ([#10890](https://github.com/PyTorchLightning/pytorch-lightning/pull/10890)) - Removed `TrainingTypePlugin.start_{training,evaluating,predicting}` hooks and the same in all subclasses ([#10989](https://github.com/PyTorchLightning/pytorch-lightning/pull/10989), [#10896](https://github.com/PyTorchLightning/pytorch-lightning/pull/10896)) - Removed `Accelerator.on_train_start` ([#10999](https://github.com/PyTorchLightning/pytorch-lightning/pull/10999)) - Removed support for Python 3.6 ([#11117](https://github.com/PyTorchLightning/pytorch-lightning/pull/11117)) - Removed `Strategy.init_optimizers` in favor of `Strategy.setup_optimizers` ([#11236](https://github.com/PyTorchLightning/pytorch-lightning/pull/11236)) - Removed `profile("training_step_and_backward")` in `Closure` class since we already profile calls `training_step` and `backward` ([#11222](https://github.com/PyTorchLightning/pytorch-lightning/pull/11222)) - Removed `Strategy.optimizer_zero_grad` ([#11246](https://github.com/PyTorchLightning/pytorch-lightning/pull/11246)) - Removed `Strategy.on_gpu` ([#11537](https://github.com/PyTorchLightning/pytorch-lightning/pull/11537)) - Removed `Strategy.on_tpu` property ([#11536](https://github.com/PyTorchLightning/pytorch-lightning/pull/11536)) - Removed `FitLoop.current_epoch` getter and setter ([#11562](https://github.com/PyTorchLightning/pytorch-lightning/pull/11562)) - Removed access to `_short_id` in `NeptuneLogger` ([#11517](https://github.com/PyTorchLightning/pytorch-lightning/pull/11517)) ### Fixed - Fixed security vulnerabilities CVE-2020-1747 and CVE-2020-14343 caused by the `PyYAML` dependency ([#11099](https://github.com/PyTorchLightning/pytorch-lightning/pull/11099)) - Fixed logging on `{test,validation}_epoch_end` with multiple dataloaders ([#11132](https://github.com/PyTorchLightning/pytorch-lightning/pull/11132)) - Reset the validation progress tracking state after sanity checking ([#11218](https://github.com/PyTorchLightning/pytorch-lightning/pull/11218)) - Fixed double evaluation bug with fault-tolerance enabled where the second call was completely skipped ([#11119](https://github.com/PyTorchLightning/pytorch-lightning/pull/11119)) - Fixed an issue with the `TPUSpawnPlugin` handling the `XLA_USE_BF16` environment variable incorrectly ([#10990](https://github.com/PyTorchLightning/pytorch-lightning/pull/10990)) - Fixed wrong typehint for `Trainer.lightning_optimizers` ([#11155](https://github.com/PyTorchLightning/pytorch-lightning/pull/11155)) - Fixed bug where the path for "last" checkpoints was not getting saved correctly which caused newer runs to not remove the previous "last" checkpoint ([#11481](https://github.com/PyTorchLightning/pytorch-lightning/pull/11481)) - Fixed bug where the path for best checkpoints was not getting saved correctly when no metric was monitored which caused newer runs to not use the best checkpoint ([#11481](https://github.com/PyTorchLightning/pytorch-lightning/pull/11481)) - Fixed the format of the configuration saved automatically by the CLI's `SaveConfigCallback` ([#11532](https://github.com/PyTorchLightning/pytorch-lightning/pull/11532)) - Fixed type promotion when tensors of higher category than float are logged ([#11401](https://github.com/PyTorchLightning/pytorch-lightning/pull/11401)) - Fixed the lr-scheduler state not being dumped to checkpoint when using the deepspeed strategy ([#11307](https://github.com/PyTorchLightning/pytorch-lightning/pull/11307)) - Fixed `SimpleProfiler` summary ([#11414](https://github.com/PyTorchLightning/pytorch-lightning/pull/11414)) - Disbled sampler replacement when using `IterableDataset` ([#11507](https://github.com/PyTorchLightning/pytorch-lightning/pull/11507)) - Fixed an issue to avoid validation loop run on restart ([#11552](https://github.com/PyTorchLightning/pytorch-lightning/pull/11552)) ## [1.5.8] - 2022-01-05 ### Fixed - Fixed `LightningCLI` race condition while saving the config ([#11199](https://github.com/PyTorchLightning/pytorch-lightning/pull/11199)) - Fixed the default value used with `log(reduce_fx=min|max)` ([#11310](https://github.com/PyTorchLightning/pytorch-lightning/pull/11310)) - Fixed data fetcher selection ([#11294](https://github.com/PyTorchLightning/pytorch-lightning/pull/11294)) - Fixed a race condition that could result in incorrect (zero) values being observed in prediction writer callbacks ([#11288](https://github.com/PyTorchLightning/pytorch-lightning/pull/11288)) - Fixed dataloaders not getting reloaded the correct amount of times when setting `reload_dataloaders_every_n_epochs` and `check_val_every_n_epoch` ([#10948](https://github.com/PyTorchLightning/pytorch-lightning/pull/10948)) - Fixed deepspeed strategy not restoring the lr-scheduler states when lr-scheduler(s) are configured through `LightningModule.configure_optimizer` ([#11322](https://github.com/PyTorchLightning/pytorch-lightning/pull/11322)) ## [1.5.7] - 2021-12-21 ### Fixed - Fixed `NeptuneLogger` when using DDP ([#11030](https://github.com/PyTorchLightning/pytorch-lightning/pull/11030)) - Fixed a bug to disable logging hyperparameters in logger if there are no hparams ([#11105](https://github.com/PyTorchLightning/pytorch-lightning/issues/11105)) - Avoid the deprecated `onnx.export(example_outputs=...)` in torch 1.10 ([#11116](https://github.com/PyTorchLightning/pytorch-lightning/pull/11116)) - Fixed an issue when torch-scripting a `LightningModule` after training with `Trainer(sync_batchnorm=True)` ([#11078](https://github.com/PyTorchLightning/pytorch-lightning/pull/11078)) - Fixed an `AttributeError` occuring when using a `CombinedLoader` (multiple dataloaders) for prediction ([#11111](https://github.com/PyTorchLightning/pytorch-lightning/pull/11111)) - Fixed bug where `Trainer(track_grad_norm=..., logger=False)` would fail ([#11114](https://github.com/PyTorchLightning/pytorch-lightning/pull/11114)) - Fixed an incorrect warning being produced by the model summary when using `bf16` precision on CPU ([#11161](https://github.com/PyTorchLightning/pytorch-lightning/pull/11161)) ### Changed - DeepSpeed does not require lightning module zero 3 partitioning ([#10655](https://github.com/PyTorchLightning/pytorch-lightning/pull/10655)) - The `ModelCheckpoint` callback now saves and restores attributes `best_k_models`, `kth_best_model_path`, `kth_value`, and `last_model_path` ([#10995](https://github.com/PyTorchLightning/pytorch-lightning/pull/10995)) ## [1.5.6] - 2021-12-15 ### Fixed - Fixed a bug where the DeepSpeedPlugin arguments `cpu_checkpointing` and `contiguous_memory_optimization` were not being forwarded to deepspeed correctly ([#10874](https://github.com/PyTorchLightning/pytorch-lightning/issues/10874)) - Fixed an issue with `NeptuneLogger` causing checkpoints to be uploaded with a duplicated file extension ([#11015](https://github.com/PyTorchLightning/pytorch-lightning/issues/11015)) - Fixed support for logging within callbacks returned from `LightningModule` ([#10991](https://github.com/PyTorchLightning/pytorch-lightning/pull/10991)) - Fixed running sanity check with `RichProgressBar` ([#10913](https://github.com/PyTorchLightning/pytorch-lightning/pull/10913)) - Fixed support for `CombinedLoader` while checking for warning raised with eval dataloaders ([#10994](https://github.com/PyTorchLightning/pytorch-lightning/pull/10994)) - The TQDM progress bar now correctly shows the `on_epoch` logged values on train epoch end ([#11069](https://github.com/PyTorchLightning/pytorch-lightning/pull/11069)) - Fixed bug where the TQDM updated the training progress bar during `trainer.validate` ([#11069](https://github.com/PyTorchLightning/pytorch-lightning/pull/11069)) ## [1.5.5] - 2021-12-07 ### Fixed - Disabled batch_size extraction for torchmetric instances because they accumulate the metrics internally ([#10815](https://github.com/PyTorchLightning/pytorch-lightning/pull/10815)) - Fixed an issue with `SignalConnector` not restoring the default signal handlers on teardown when running on SLURM or with fault-tolerant training enabled ([#10611](https://github.com/PyTorchLightning/pytorch-lightning/pull/10611)) - Fixed `SignalConnector._has_already_handler` check for callable type ([#10483](https://github.com/PyTorchLightning/pytorch-lightning/pull/10483)) - Fixed an issue to return the results for each dataloader separately instead of duplicating them for each ([#10810](https://github.com/PyTorchLightning/pytorch-lightning/pull/10810)) - Improved exception message if `rich` version is less than `10.2.2` ([#10839](https://github.com/PyTorchLightning/pytorch-lightning/pull/10839)) - Fixed uploading best model checkpoint in NeptuneLogger ([#10369](https://github.com/PyTorchLightning/pytorch-lightning/pull/10369)) - Fixed early schedule reset logic in PyTorch profiler that was causing data leak ([#10837](https://github.com/PyTorchLightning/pytorch-lightning/pull/10837)) - Fixed a bug that caused incorrect batch indices to be passed to the `BasePredictionWriter` hooks when using a dataloader with `num_workers > 0` ([#10870](https://github.com/PyTorchLightning/pytorch-lightning/pull/10870)) - Fixed an issue with item assignment on the logger on rank > 0 for those who support it ([#10917](https://github.com/PyTorchLightning/pytorch-lightning/pull/10917)) - Fixed importing `torch_xla.debug` for `torch-xla<1.8` ([#10836](https://github.com/PyTorchLightning/pytorch-lightning/pull/10836)) - Fixed an issue with `DDPSpawnPlugin` and related plugins leaving a temporary checkpoint behind ([#10934](https://github.com/PyTorchLightning/pytorch-lightning/pull/10934)) - Fixed a `TypeError` occuring in the `SingalConnector.teardown()` method ([#10961](https://github.com/PyTorchLightning/pytorch-lightning/pull/10961)) ## [1.5.4] - 2021-11-30 ### Fixed - Fixed support for `--key.help=class` with the `LightningCLI` ([#10767](https://github.com/PyTorchLightning/pytorch-lightning/pull/10767)) - Fixed `_compare_version` for python packages ([#10762](https://github.com/PyTorchLightning/pytorch-lightning/pull/10762)) - Fixed TensorBoardLogger `SummaryWriter` not close before spawning the processes ([#10777](https://github.com/PyTorchLightning/pytorch-lightning/pull/10777)) - Fixed a consolidation error in Lite when attempting to save the state dict of a sharded optimizer ([#10746](https://github.com/PyTorchLightning/pytorch-lightning/pull/10746)) - Fixed the default logging level for batch hooks associated with training from `on_step=False, on_epoch=True` to `on_step=True, on_epoch=False` ([#10756](https://github.com/PyTorchLightning/pytorch-lightning/pull/10756)) ### Removed - Removed PyTorch 1.6 support ([#10367](https://github.com/PyTorchLightning/pytorch-lightning/pull/10367), [#10738](https://github.com/PyTorchLightning/pytorch-lightning/pull/10738)) ## [1.5.3] - 2021-11-24 ### Fixed - Fixed `ShardedTensor` state dict hook registration to check if torch distributed is available ([#10621](https://github.com/PyTorchLightning/pytorch-lightning/pull/10621)) - Fixed an issue with `self.log` not respecting a tensor's `dtype` when applying computations ([#10076](https://github.com/PyTorchLightning/pytorch-lightning/pull/10076)) - Fixed LigtningLite `_wrap_init` popping unexisting keys from DataLoader signature parameters ([#10613](https://github.com/PyTorchLightning/pytorch-lightning/pull/10613)) - Fixed signals being registered within threads ([#10610](https://github.com/PyTorchLightning/pytorch-lightning/pull/10610)) - Fixed an issue that caused Lightning to extract the batch size even though it was set by the user in `LightningModule.log` ([#10408](https://github.com/PyTorchLightning/pytorch-lightning/pull/10408)) - Fixed `Trainer(move_metrics_to_cpu=True)` not moving the evaluation logged results to CPU ([#10631](https://github.com/PyTorchLightning/pytorch-lightning/pull/10631)) - Fixed the `{validation,test}_step` outputs getting moved to CPU with `Trainer(move_metrics_to_cpu=True)` ([#10631](https://github.com/PyTorchLightning/pytorch-lightning/pull/10631)) - Fixed an issue with collecting logged test results with multiple dataloaders ([#10522](https://github.com/PyTorchLightning/pytorch-lightning/pull/10522)) ## [1.5.2] - 2021-11-16 ### Fixed - Fixed `CombinedLoader` and `max_size_cycle` didn't receive a `DistributedSampler` ([#10374](https://github.com/PyTorchLightning/pytorch-lightning/issues/10374)) - Fixed an issue where class or init-only variables of dataclasses were passed to the dataclass constructor in `utilities.apply_to_collection` ([#9702](https://github.com/PyTorchLightning/pytorch-lightning/issues/9702)) - Fixed `isinstance` not working with `init_meta_context`, materialized model not being moved to the device ([#10493](https://github.com/PyTorchLightning/metrics/pull/10493)) - Fixed an issue that prevented the Trainer to shutdown workers when execution is interrupted due to failure([#10463](https://github.com/PyTorchLightning/pytorch-lightning/issues/10463)) - Squeeze the early stopping monitor to remove empty tensor dimensions ([#10461](https://github.com/PyTorchLightning/pytorch-lightning/issues/10461)) - Fixed sampler replacement logic with `overfit_batches` to only replace the sample when `SequentialSampler` is not used ([#10486](https://github.com/PyTorchLightning/pytorch-lightning/issues/10486)) - Fixed scripting causing false positive deprecation warnings ([#10470](https://github.com/PyTorchLightning/pytorch-lightning/pull/10470), [#10555](https://github.com/PyTorchLightning/pytorch-lightning/pull/10555)) - Do not fail if batch size could not be inferred for logging when using DeepSpeed ([#10438](https://github.com/PyTorchLightning/pytorch-lightning/issues/10438)) - Fixed propagation of device and dtype information to submodules of LightningLite when they inherit from `DeviceDtypeModuleMixin` ([#10559](https://github.com/PyTorchLightning/pytorch-lightning/issues/10559)) ## [1.5.1] - 2021-11-09 ### Fixed - Fixed `apply_to_collection(defaultdict)` ([#10316](https://github.com/PyTorchLightning/pytorch-lightning/issues/10316)) - Fixed failure when `DataLoader(batch_size=None)` is passed ([#10345](https://github.com/PyTorchLightning/pytorch-lightning/issues/10345)) - Fixed interception of `__init__` arguments for sub-classed DataLoader re-instantiation in Lite ([#10334](https://github.com/PyTorchLightning/pytorch-lightning/issues/10334)) - Fixed issue with pickling `CSVLogger` after a call to `CSVLogger.save` ([#10388](https://github.com/PyTorchLightning/pytorch-lightning/pull/10388)) - Fixed an import error being caused by `PostLocalSGD` when `torch.distributed` not available ([#10359](https://github.com/PyTorchLightning/pytorch-lightning/pull/10359)) - Fixed the logging with `on_step=True` in epoch-level hooks causing unintended side-effects. Logging with `on_step=True` in epoch-level hooks will now correctly raise an error ([#10409](https://github.com/PyTorchLightning/pytorch-lightning/pull/10409)) - Fixed deadlocks for distributed training with `RichProgressBar` ([#10428](https://github.com/PyTorchLightning/pytorch-lightning/pull/10428)) - Fixed an issue where the model wrapper in Lite converted non-floating point tensors to float ([#10429](https://github.com/PyTorchLightning/pytorch-lightning/pull/10429)) - Fixed an issue with inferring the dataset type in fault-tolerant training ([#10432](https://github.com/PyTorchLightning/pytorch-lightning/pull/10432)) - Fixed dataloader workers with `persistent_workers` being deleted on every iteration ([#10434](https://github.com/PyTorchLightning/pytorch-lightning/pull/10434)) ## [1.5.0] - 2021-11-02 ### Added - Added support for monitoring the learning rate without schedulers in `LearningRateMonitor` ([#9786](https://github.com/PyTorchLightning/pytorch-lightning/issues/9786)) - Added registration of `ShardedTensor` state dict hooks in `LightningModule.__init__` if the PyTorch version supports `ShardedTensor` ([#8944](https://github.com/PyTorchLightning/pytorch-lightning/pull/8944)) - Added error handling including calling of `on_keyboard_interrupt()` and `on_exception()` for all entrypoints (fit, validate, test, predict) ([#8819](https://github.com/PyTorchLightning/pytorch-lightning/pull/8819)) - Added a flavor of `training_step` that takes `dataloader_iter` as an argument ([#8807](https://github.com/PyTorchLightning/pytorch-lightning/pull/8807)) - Added a `state_key` property to the `Callback` base class ([#6886](https://github.com/PyTorchLightning/pytorch-lightning/pull/6886)) - Added progress tracking to loops: * Integrated `TrainingEpochLoop.total_batch_idx` ([#8598](https://github.com/PyTorchLightning/pytorch-lightning/pull/8598)) * Added `BatchProgress` and integrated `TrainingEpochLoop.is_last_batch` ([#9657](https://github.com/PyTorchLightning/pytorch-lightning/pull/9657)) * Avoid optional `Tracker` attributes ([#9320](https://github.com/PyTorchLightning/pytorch-lightning/pull/9320)) * Reset `current` progress counters when restarting an epoch loop that had already finished ([#9371](https://github.com/PyTorchLightning/pytorch-lightning/pull/9371)) * Call `reset_on_restart` in the loop's `reset` hook instead of when loading a checkpoint ([#9561](https://github.com/PyTorchLightning/pytorch-lightning/pull/9561)) * Use `completed` over `processed` in `reset_on_restart` ([#9656](https://github.com/PyTorchLightning/pytorch-lightning/pull/9656)) * Renamed `reset_on_epoch` to `reset_on_run` ([#9658](https://github.com/PyTorchLightning/pytorch-lightning/pull/9658)) - Added `batch_size` and `rank_zero_only` arguments for `log_dict` to match `log` ([#8628](https://github.com/PyTorchLightning/pytorch-lightning/pull/8628)) - Added a check for unique GPU ids ([#8666](https://github.com/PyTorchLightning/pytorch-lightning/pull/8666)) - Added `ResultCollection` state_dict to the Loop `state_dict` and added support for distributed reload ([#8641](https://github.com/PyTorchLightning/pytorch-lightning/pull/8641)) - Added DeepSpeed collate checkpoint utility function ([#8701](https://github.com/PyTorchLightning/pytorch-lightning/pull/8701)) - Added a `handles_accumulate_grad_batches` property to the training type plugins ([#8856](https://github.com/PyTorchLightning/pytorch-lightning/pull/8856)) - Added a warning to `WandbLogger` when reusing a wandb run ([#8714](https://github.com/PyTorchLightning/pytorch-lightning/pull/8714)) - Added `log_graph` argument for `watch` method of `WandbLogger` ([#8662](https://github.com/PyTorchLightning/pytorch-lightning/pull/8662)) - `LightningCLI` additions: * Added `LightningCLI(run=False|True)` to choose whether to run a `Trainer` subcommand ([#8751](https://github.com/PyTorchLightning/pytorch-lightning/pull/8751)) * Added support to call any trainer function from the `LightningCLI` via subcommands ([#7508](https://github.com/PyTorchLightning/pytorch-lightning/pull/7508)) * Allow easy trainer re-instantiation ([#7508](https://github.com/PyTorchLightning/pytorch-lightning/pull/9241)) * Automatically register all optimizers and learning rate schedulers ([#9565](https://github.com/PyTorchLightning/pytorch-lightning/pull/9565)) * Allow registering custom optimizers and learning rate schedulers without subclassing the CLI ([#9565](https://github.com/PyTorchLightning/pytorch-lightning/pull/9565)) * Support shorthand notation to instantiate optimizers and learning rate schedulers ([#9565](https://github.com/PyTorchLightning/pytorch-lightning/pull/9565)) * Support passing lists of callbacks via command line ([#8815](https://github.com/PyTorchLightning/pytorch-lightning/pull/8815)) * Support shorthand notation to instantiate models ([#9588](https://github.com/PyTorchLightning/pytorch-lightning/pull/9588)) * Support shorthand notation to instantiate datamodules ([#10011](https://github.com/PyTorchLightning/pytorch-lightning/pull/10011)) * Added `multifile` option to `LightningCLI` to enable/disable config saving to preserve multiple files structure ([#9073](https://github.com/PyTorchLightning/pytorch-lightning/pull/9073)) - Fault-tolerant training: * Added `FastForwardSampler` and `CaptureIterableDataset` injection to data loading utilities ([#8366](https://github.com/PyTorchLightning/pytorch-lightning/pull/8366)) * Added `DataFetcher` to control fetching flow ([#8890](https://github.com/PyTorchLightning/pytorch-lightning/pull/8890)) * Added `SharedCycleIteratorState` to prevent infinite loop ([#8889](https://github.com/PyTorchLightning/pytorch-lightning/pull/8889)) * Added `CaptureMapDataset` for state management in map-style datasets ([#8891](https://github.com/PyTorchLightning/pytorch-lightning/pull/8891)) * Added Fault Tolerant Training to `DataFetcher` ([#8891](https://github.com/PyTorchLightning/pytorch-lightning/pull/8891)) * Replaced old prefetch iterator with new `DataFetcher` in training loop ([#8953](https://github.com/PyTorchLightning/pytorch-lightning/pull/8953)) * Added partial support for global random state fault-tolerance in map-style datasets ([#8950](https://github.com/PyTorchLightning/pytorch-lightning/pull/8950)) * Converted state to tuple explicitly when setting Python random state ([#9401](https://github.com/PyTorchLightning/pytorch-lightning/pull/9401)) * Added support for restarting an optimizer loop (multiple optimizers) ([#9537](https://github.com/PyTorchLightning/pytorch-lightning/pull/9537)) * Added support for restarting within Evaluation Loop ([#9563](https://github.com/PyTorchLightning/pytorch-lightning/pull/9563)) * Added mechanism to detect that a signal has been sent so the Trainer can gracefully exit ([#9566](https://github.com/PyTorchLightning/pytorch-lightning/pull/9566)) * Added support for skipping ahead to validation during the auto-restart of fitting ([#9681](https://github.com/PyTorchLightning/pytorch-lightning/pull/9681)) * Added support for auto-restart if a fault-tolerant checkpoint is available ([#9722](https://github.com/PyTorchLightning/pytorch-lightning/pull/9722)) - Checkpoint saving and loading extensibility: * Added `CheckpointIO` plugin to expose checkpoint IO from training type plugin ([#8743](https://github.com/PyTorchLightning/pytorch-lightning/pull/8743)) * Refactored `CheckpointConnector` to offload validation logic to the `CheckpointIO` plugin ([#9045](https://github.com/PyTorchLightning/pytorch-lightning/pull/9045)) * Added `remove_checkpoint` to `CheckpointIO` plugin by moving the responsibility out of the `ModelCheckpoint` callback ([#9373](https://github.com/PyTorchLightning/pytorch-lightning/pull/9373)) * Added `XLACheckpointIO` plugin ([#9972](https://github.com/PyTorchLightning/pytorch-lightning/pull/9972)) - Loop customization: * Added `Closure` and `AbstractClosure` classes ([#8642](https://github.com/PyTorchLightning/pytorch-lightning/pull/8642)) * Refactored `TrainingBatchLoop` and extracted `OptimizerLoop`, splitting off automatic optimization into its own loop ([#9191](https://github.com/PyTorchLightning/pytorch-lightning/pull/9191)) * Removed `TrainingBatchLoop.backward()`; manual optimization now calls directly into `Accelerator.backward()` and automatic optimization handles backward in new `OptimizerLoop` ([#9265](https://github.com/PyTorchLightning/pytorch-lightning/pull/9265)) * Extracted `ManualOptimization` logic from `TrainingBatchLoop` into its own separate loop class ([#9266](https://github.com/PyTorchLightning/pytorch-lightning/pull/9266)) * Added `OutputResult` and `ManualResult` classes ([#9437](https://github.com/PyTorchLightning/pytorch-lightning/pull/9437), [#9424](https://github.com/PyTorchLightning/pytorch-lightning/pull/9424)) * Marked `OptimizerLoop.backward` as protected ([#9514](https://github.com/PyTorchLightning/pytorch-lightning/pull/9514)) * Marked `FitLoop.should_accumulate` as protected ([#9515](https://github.com/PyTorchLightning/pytorch-lightning/pull/9515)) * Marked several methods in `PredictionLoop` as protected: `on_predict_start`, `on_predict_epoch_end`, `on_predict_end`, `on_predict_model_eval` ([#9516](https://github.com/PyTorchLightning/pytorch-lightning/pull/9516)) * Marked several methods in `EvaluationLoop` as protected: `get_max_batches`, `on_evaluation_model_eval`, `on_evaluation_model_train`, `on_evaluation_start`, `on_evaluation_epoch_start`, `on_evaluation_epoch_end`, `on_evaluation_end`, `reload_evaluation_dataloaders` ([#9516](https://github.com/PyTorchLightning/pytorch-lightning/pull/9516)) * Marked several methods in `EvaluationEpochLoop` as protected: `on_evaluation_batch_start`, `evaluation_step`, `evaluation_step_end` ([#9516](https://github.com/PyTorchLightning/pytorch-lightning/pull/9516)) * Added `yielding_training_step` example ([#9983](https://github.com/PyTorchLightning/pytorch-lightning/pull/9983)) - Added support for saving and loading state of multiple callbacks of the same type ([#7187](https://github.com/PyTorchLightning/pytorch-lightning/pull/7187)) - Added DeepSpeed Stage 1 support ([#8974](https://github.com/PyTorchLightning/pytorch-lightning/pull/8974)) - Added `Python dataclass` support for `LightningDataModule` ([#8272](https://github.com/PyTorchLightning/pytorch-lightning/issues/8272)) - Added sanitization of tensors when they get logged as hyperparameters in `TensorBoardLogger` ([#9031](https://github.com/PyTorchLightning/pytorch-lightning/pull/9031)) - Added `InterBatchParallelDataFetcher` ([#9020](https://github.com/PyTorchLightning/pytorch-lightning/pull/9020)) - Added `DataLoaderIterDataFetcher` ([#9020](https://github.com/PyTorchLightning/pytorch-lightning/pull/9020)) - Added `DataFetcher` within `Fit / Evaluation` Loop ([#9047](https://github.com/PyTorchLightning/pytorch-lightning/pull/9047)) - Added a friendly error message when DDP attempts to spawn new distributed processes with rank > 0 ([#9005](https://github.com/PyTorchLightning/pytorch-lightning/pull/9005)) - Added Rich integration: * Added Rich progress bar ([#8929](https://github.com/PyTorchLightning/pytorch-lightning/pull/8929), [#9559](https://github.com/PyTorchLightning/pytorch-lightning/pull/9559)) * Added Support for iterable datasets ([#9734](https://github.com/PyTorchLightning/pytorch-lightning/pull/9734)) * Added `RichModelSummary` callback ([#9546](https://github.com/PyTorchLightning/pytorch-lightning/pull/9546)) * Added `configure_columns` method to `RichProgressBar` ([#10288](https://github.com/PyTorchLightning/pytorch-lightning/pull/10288)) * Added `leave` argument to `RichProgressBar` ([#10301](https://github.com/PyTorchLightning/pytorch-lightning/pull/10301)) - Added input validation logic for precision ([#9080](https://github.com/PyTorchLightning/pytorch-lightning/pull/9080)) - Added support for CPU AMP autocast ([#9084](https://github.com/PyTorchLightning/pytorch-lightning/pull/9084)) - Added `on_exception` callback hook ([#9183](https://github.com/PyTorchLightning/pytorch-lightning/pull/9183)) - Added a warning to DeepSpeed when inferring batch size ([#9221](https://github.com/PyTorchLightning/pytorch-lightning/pull/9221)) - Added `ModelSummary` callback ([#9344](https://github.com/PyTorchLightning/pytorch-lightning/pull/9344)) - Added `log_images`, `log_text` and `log_table` to `WandbLogger` ([#9545](https://github.com/PyTorchLightning/pytorch-lightning/pull/9545)) - Added `PL_RECONCILE_PROCESS` environment variable to enable process reconciliation regardless of cluster environment settings ([#9389](https://github.com/PyTorchLightning/pytorch-lightning/pull/9389)) - Added `get_device_stats` to the Accelerator interface and added its implementation for GPU and TPU ([#9586](https://github.com/PyTorchLightning/pytorch-lightning/pull/9586)) - Added a warning when an unknown key is encountered in the optimizer configuration, and when `OneCycleLR` is used with `"interval": "epoch"` ([#9666](https://github.com/PyTorchLightning/pytorch-lightning/pull/9666)) - Added `DeviceStatsMonitor` callback ([#9712](https://github.com/PyTorchLightning/pytorch-lightning/pull/9712)) - Added `enable_progress_bar` to the Trainer constructor ([#9664](https://github.com/PyTorchLightning/pytorch-lightning/pull/9664)) - Added `pl_legacy_patch` load utility for loading old checkpoints that have pickled legacy Lightning attributes ([#9166](https://github.com/PyTorchLightning/pytorch-lightning/pull/9166)) - Added support for `torch.use_deterministic_algorithms` ([#9121](https://github.com/PyTorchLightning/pytorch-lightning/pull/9121)) - Added automatic parameters tying for TPUs ([#9525](https://github.com/PyTorchLightning/pytorch-lightning/pull/9525)) - Added support for `torch.autograd.set_detect_anomaly` through `Trainer` constructor argument `detect_anomaly` ([#9848](https://github.com/PyTorchLightning/pytorch-lightning/pull/9848)) - Added `enable_model_summary` flag to Trainer ([#9699](https://github.com/PyTorchLightning/pytorch-lightning/pull/9699)) - Added `strategy` argument to Trainer ([#8597](https://github.com/PyTorchLightning/pytorch-lightning/pull/8597)) - Added `init_meta_context`, `materialize_module` utilities ([#9920](https://github.com/PyTorchLightning/pytorch-lightning/pull/9920)) - Added `TPUPrecisionPlugin` ([#10020](https://github.com/PyTorchLightning/pytorch-lightning/pull/#10020)) - Added `torch.bfloat16` support: * Added bfloat16 support for Lightning Trainer ([#9049](https://github.com/PyTorchLightning/pytorch-lightning/pull/9049)) * Renamed `TPUHalfPrecisionPlugin` to `TPUBf16PrecisionPlugin` ([#10026](https://github.com/PyTorchLightning/pytorch-lightning/pull/10026)) * Default to `precision=bf16` on CPU when `precision=16` is passed ([#10033](https://github.com/PyTorchLightning/pytorch-lightning/pull/10033)) * Added support for `torch.autocast` ([#10053](https://github.com/PyTorchLightning/pytorch-lightning/pull/10053)) - Added `kfold` example for loop customization ([#9965](https://github.com/PyTorchLightning/pytorch-lightning/pull/9965)) - LightningLite: * Added `PrecisionPlugin.forward_context`, making it the default implementation for all `{train,val,test,predict}_step_context()` methods ([#9988](https://github.com/PyTorchLightning/pytorch-lightning/pull/9988)) * Added `DDPSpawnPlugin.spawn()` for spawning new processes of a given function ([#10018](https://github.com/PyTorchLightning/pytorch-lightning/pull/10018), [#10022](https://github.com/PyTorchLightning/pytorch-lightning/pull/10022)) * Added `TrainingTypePlugin.{_setup_model, _setup_optimizer}` methods ([#9994](https://github.com/PyTorchLightning/pytorch-lightning/pull/9994), [#10064](https://github.com/PyTorchLightning/pytorch-lightning/pull/10064)) * Implemented `DataParallelPlugin._setup_model` ([#10010](https://github.com/PyTorchLightning/pytorch-lightning/pull/10010)) * Implemented `DeepSpeedPlugin._setup_model_and_optimizers` ([#10009](https://github.com/PyTorchLightning/pytorch-lightning/pull/10009), [#10064](https://github.com/PyTorchLightning/pytorch-lightning/pull/10064)) * Implemented `{DDPShardedPlugin,DDPShardedSpawnPlugin}._setup_model_and_optimizers` ([#10028](https://github.com/PyTorchLightning/pytorch-lightning/pull/10028), [#10064](https://github.com/PyTorchLightning/pytorch-lightning/pull/10064)) * Added optional `model` argument to the `optimizer_step` methods in accelerators and plugins ([#10023](https://github.com/PyTorchLightning/pytorch-lightning/pull/10023)) * Updated precision attributes in `DeepSpeedPlugin` ([#10164](https://github.com/PyTorchLightning/pytorch-lightning/pull/10164)) * Added the ability to return a result from rank 0 in `DDPSpawnPlugin.spawn` ([#10162](https://github.com/PyTorchLightning/pytorch-lightning/pull/10162)) * Added `pytorch_lightning.lite` package ([#10175](https://github.com/PyTorchLightning/pytorch-lightning/pull/10175)) * Added `LightningLite` documentation ([#10043](https://github.com/PyTorchLightning/pytorch-lightning/pull/10043)) * Added `LightningLite` examples ([#9987](https://github.com/PyTorchLightning/pytorch-lightning/pull/9987)) * Make the `_LiteDataLoader` an iterator and add supports for custom dataloader ([#10279](https://github.com/PyTorchLightning/pytorch-lightning/pull/10279)) - Added `use_omegaconf` argument to `save_hparams_to_yaml` plugin ([#9170](https://github.com/PyTorchLightning/pytorch-lightning/pull/9170)) - Added `ckpt_path` argument for `Trainer.fit()` ([#10061](https://github.com/PyTorchLightning/pytorch-lightning/pull/10061)) - Added `auto_device_count` method to `Accelerators` ([#10222](https://github.com/PyTorchLightning/pytorch-lightning/pull/10222)) - Added support for `devices="auto"` ([#10264](https://github.com/PyTorchLightning/pytorch-lightning/pull/10264)) - Added a `filename` argument in `ModelCheckpoint.format_checkpoint_name` ([#9818](https://github.com/PyTorchLightning/pytorch-lightning/pull/9818)) - Added support for empty `gpus` list to run on CPU ([#10246](https://github.com/PyTorchLightning/pytorch-lightning/pull/10246)) - Added a warning if multiple batch sizes are found from ambiguous batch ([#10247](https://github.com/PyTorchLightning/pytorch-lightning/pull/10247)) ### Changed - Trainer now raises a `MisconfigurationException` when its methods are called with `ckpt_path="best"` but a checkpoint callback isn't configured ([#9841](https://github.com/PyTorchLightning/pytorch-lightning/pull/9841)) - Setting `Trainer(accelerator="ddp_cpu")` now does not spawn a subprocess if `num_processes` is kept `1` along with `num_nodes > 1` ([#9603](https://github.com/PyTorchLightning/pytorch-lightning/pull/9603)) - Module imports are now catching `ModuleNotFoundError` instead of `ImportError` ([#9867](https://github.com/PyTorchLightning/pytorch-lightning/pull/9867)) - `pytorch_lightning.loggers.neptune.NeptuneLogger` is now consistent with the new [neptune-client](https://github.com/neptune-ai/neptune-client) API; the old [neptune-client](https://github.com/neptune-ai/neptune-client) API is supported by `NeptuneClient` from the [neptune-contrib](https://github.com/neptune-ai/neptune-contrib) repo ([#6867](https://github.com/PyTorchLightning/pytorch-lightning/pull/6867)) - Parsing of `enums` type hyperparameters to be saved in the `haprams.yaml` file by TensorBoard and CSV loggers has been fixed and made in line with how OmegaConf parses it ([#9170](https://github.com/PyTorchLightning/pytorch-lightning/pull/9170)) - Parsing of the `gpus` Trainer argument has changed: `gpus="n"` (str) no longer selects the GPU index n and instead selects the first n devices ([#8770](https://github.com/PyTorchLightning/pytorch-lightning/pull/8770)) - `iteration_count` and other index attributes in the loops has been replaced with progress dataclasses ([#8477](https://github.com/PyTorchLightning/pytorch-lightning/pull/8477)) - The `trainer.lightning_module` reference is now properly set at the very beginning of a run ([#8536](https://github.com/PyTorchLightning/pytorch-lightning/pull/8536)) - The model weights now get loaded in all cases when the checkpoint path gets provided in validate/test/predict, regardless of whether the model instance is provided or not ([#8352](https://github.com/PyTorchLightning/pytorch-lightning/pull/8352)) - The `Trainer` functions `reset_{train,val,test,predict}_dataloader`, `reset_train_val_dataloaders`, and `request_dataloader` `model` argument is now optional ([#8536](https://github.com/PyTorchLightning/pytorch-lightning/pull/8536)) - Saved checkpoints will no longer use the type of a `Callback` as the key to avoid issues with unpickling ([#6886](https://github.com/PyTorchLightning/pytorch-lightning/pull/6886)) - Improved string conversion for `ResultCollection` ([#8622](https://github.com/PyTorchLightning/pytorch-lightning/pull/8622)) - `LightningCLI` changes: * `LightningCLI.init_parser` now returns the parser instance ([#8721](https://github.com/PyTorchLightning/pytorch-lightning/pull/8721)) * `LightningCLI.add_core_arguments_to_parser`, `LightningCLI.parse_arguments` now take a `parser` argument ([#8721](https://github.com/PyTorchLightning/pytorch-lightning/pull/8721)) * `LightningCLI.instantiate_trainer` now takes a config and a list of callbacks ([#8721](https://github.com/PyTorchLightning/pytorch-lightning/pull/8721)) * Split `LightningCLI.add_core_arguments_to_parser` into `LightningCLI.add_default_arguments_to_parser` + `LightningCLI.add_core_arguments_to_parser` ([#8721](https://github.com/PyTorchLightning/pytorch-lightning/pull/8721)) - The accelerator and training type plugin `setup` hooks no longer have a `model` argument ([#8536](https://github.com/PyTorchLightning/pytorch-lightning/pull/8536)) - The accelerator and training type plugin `update_global_step` hook has been removed ([#8856](https://github.com/PyTorchLightning/pytorch-lightning/pull/8856)) - The coverage of `self.log`-ing in any `LightningModule` or `Callback` hook has been improved ([#8498](https://github.com/PyTorchLightning/pytorch-lightning/pull/8498)) - `self.log`-ing without a `Trainer` reference now raises a warning instead of an exception ([#9733](https://github.com/PyTorchLightning/pytorch-lightning/pull/9733)) - Removed restrictions in the Trainer that loggers can only log from rank 0; the existing logger behavior has not changed ([#8608](https://github.com/PyTorchLightning/pytorch-lightning/pull/8608)) - `Trainer.request_dataloader` now takes a `RunningStage` enum instance ([#8858](https://github.com/PyTorchLightning/pytorch-lightning/pull/8858)) - Changed `rank_zero_warn` to `NotImplementedError` in the `{train, val, test, predict}_dataloader` hooks that `Lightning(Data)Module` uses ([#9161](https://github.com/PyTorchLightning/pytorch-lightning/pull/9161)) - Moved `block_ddp_sync_behaviour` out of `TrainingBatchLoop` to loop utilities ([#9192](https://github.com/PyTorchLightning/pytorch-lightning/pull/9192)) - Executing the `optimizer_closure` is now required when overriding the `optimizer_step` hook ([#9360](https://github.com/PyTorchLightning/pytorch-lightning/pull/9360)) - Changed logging of `LightningModule` and `LightningDataModule` hyperparameters to raise an exception only if there are colliding keys with different values ([#9496](https://github.com/PyTorchLightning/pytorch-lightning/pull/9496)) - `seed_everything` now fails when an invalid seed value is passed instead of selecting a random seed ([#8787](https://github.com/PyTorchLightning/pytorch-lightning/pull/8787)) - The Trainer now calls `TrainingTypePlugin` collective APIs directly instead of going through the Accelerator reference ([#9677](https://github.com/PyTorchLightning/pytorch-lightning/pull/9677), [#9901](https://github.com/PyTorchLightning/pytorch-lightning/pull/9901)) - The tuner now usees a unique filename to save a temporary checkpoint ([#9682](https://github.com/PyTorchLightning/pytorch-lightning/pull/9682)) - Changed `HorovodPlugin.all_gather` to return a `torch.Tensor` instead of a list ([#9696](https://github.com/PyTorchLightning/pytorch-lightning/pull/9696)) - Changed Trainer connectors to be protected attributes: * Configuration Validator ([#9779](https://github.com/PyTorchLightning/pytorch-lightning/pull/9779)) - The `current_epoch` and `global_step` attributes now get restored irrespective of the Trainer task ([#9413](https://github.com/PyTorchLightning/pytorch-lightning/pull/9413)) - Trainer now raises an exception when requesting `amp_level` with native `amp_backend` ([#9755](https://github.com/PyTorchLightning/pytorch-lightning/pull/9755)) - Update the logic to check for accumulation steps with deepspeed ([#9826](https://github.com/PyTorchLightning/pytorch-lightning/pull/9826)) - `pytorch_lightning.utilities.grads.grad_norm` now raises an exception if parameter `norm_type <= 0` ([#9765](https://github.com/PyTorchLightning/pytorch-lightning/pull/9765)) - Updated error message for interactive incompatible plugins ([#9896](https://github.com/PyTorchLightning/pytorch-lightning/pull/9896)) - Moved the `optimizer_step` and `clip_gradients` hook from the `Accelerator` and `TrainingTypePlugin` into the `PrecisionPlugin` ([#10143](https://github.com/PyTorchLightning/pytorch-lightning/pull/10143), [#10029](https://github.com/PyTorchLightning/pytorch-lightning/pull/10029)) - `NativeMixedPrecisionPlugin` and its subclasses now take an optional `GradScaler` instance ([#10055](https://github.com/PyTorchLightning/pytorch-lightning/pull/10055)) - Trainer is now raising a `MisconfigurationException` instead of a warning if `Trainer.{validate/test}` is missing required methods ([#10016](https://github.com/PyTorchLightning/pytorch-lightning/pull/10016)) - Changed default value of the `max_steps` Trainer argument from `None` to -1 ([#9460](https://github.com/PyTorchLightning/pytorch-lightning/pull/9460)) - LightningModule now raises an error when calling `log(on_step=False, on_epoch=False)` ([#10227](https://github.com/PyTorchLightning/pytorch-lightning/pull/10227)) - Quantization aware training observers are now disabled by default during validating/testing/predicting stages ([#8540](https://github.com/PyTorchLightning/pytorch-lightning/pull/8540)) - Raised `MisconfigurationException` when total length of `dataloader` across ranks is zero, and give warning when total length is non-zero, but only local rank length is zero. ([#9827](https://github.com/PyTorchLightning/pytorch-lightning/pull/9827)) - Changed the model size calculation using `ByteCounter` ([#10123](https://github.com/PyTorchLightning/pytorch-lightning/pull/10123)) - Enabled `on_load_checkpoint` for `LightningDataModule` for all `trainer_fn` ([#10238](https://github.com/PyTorchLightning/pytorch-lightning/pull/10238)) - Allowed separate config files for parameters with class type when LightningCLI is in `subclass_mode=False` ([#10286](https://github.com/PyTorchLightning/pytorch-lightning/pull/10286)) ### Deprecated - Deprecated Trainer argument `terminate_on_nan` in favor of `detect_anomaly`([#9175](https://github.com/PyTorchLightning/pytorch-lightning/pull/9175)) - Deprecated `Trainer.terminate_on_nan` public attribute access ([#9849](https://github.com/PyTorchLightning/pytorch-lightning/pull/9849)) - Deprecated `LightningModule.summarize()` in favor of `pytorch_lightning.utilities.model_summary.summarize()` ([#8513](https://github.com/PyTorchLightning/pytorch-lightning/pull/8513)) - Deprecated `LightningModule.model_size` ([#8343](https://github.com/PyTorchLightning/pytorch-lightning/pull/8343)) - Deprecated `DataModule` properties: `train_transforms`, `val_transforms`, `test_transforms`, `size`, `dims` ([#8851](https://github.com/PyTorchLightning/pytorch-lightning/pull/8851)) - Deprecated `add_to_queue`, `get_from_queue` from `LightningModule` in favor of corresponding methods in the `DDPSpawnPlugin` ([#9118](https://github.com/PyTorchLightning/pytorch-lightning/pull/9118)) - Deprecated `LightningModule.get_progress_bar_dict` and `Trainer.progress_bar_dict` in favor of `pytorch_lightning.callbacks.progress.base.get_standard_metrics` and `ProgressBarBase.get_metrics` ([#8985](https://github.com/PyTorchLightning/pytorch-lightning/pull/8985)) - Deprecated `prepare_data_per_node` flag on Trainer and set it as a property of `DataHooks`, accessible in the `LightningModule` and `LightningDataModule` ([#8958](https://github.com/PyTorchLightning/pytorch-lightning/pull/8958)) - Deprecated the `TestTubeLogger` ([#9065](https://github.com/PyTorchLightning/pytorch-lightning/pull/9065)) - Deprecated `on_{train/val/test/predict}_dataloader()` from `LightningModule` and `LightningDataModule` ([#9098](https://github.com/PyTorchLightning/pytorch-lightning/pull/9098)) - Deprecated `on_keyboard_interrupt` callback hook in favor of new `on_exception` hook ([#9260](https://github.com/PyTorchLightning/pytorch-lightning/pull/9260)) - Deprecated passing `process_position` to the `Trainer` constructor in favor of adding the `ProgressBar` callback with `process_position` directly to the list of callbacks ([#9222](https://github.com/PyTorchLightning/pytorch-lightning/pull/9222)) - Deprecated passing `flush_logs_every_n_steps` as a Trainer argument, instead pass it to the logger init if supported ([#9366](https://github.com/PyTorchLightning/pytorch-lightning/pull/9366)) - Deprecated `LightningLoggerBase.close`, `LoggerCollection.close` in favor of `LightningLoggerBase.finalize`, `LoggerCollection.finalize` ([#9422](https://github.com/PyTorchLightning/pytorch-lightning/pull/9422)) - Deprecated passing `progress_bar_refresh_rate` to the `Trainer` constructor in favor of adding the `ProgressBar` callback with `refresh_rate` directly to the list of callbacks, or passing `enable_progress_bar=False` to disable the progress bar ([#9616](https://github.com/PyTorchLightning/pytorch-lightning/pull/9616)) - Deprecated `LightningDistributed` and moved the broadcast logic to `DDPPlugin` and `DDPSpawnPlugin` directly ([#9691](https://github.com/PyTorchLightning/pytorch-lightning/pull/9691)) - Deprecated passing `stochastic_weight_avg` to the `Trainer` constructor in favor of adding the `StochasticWeightAveraging` callback directly to the list of callbacks ([#8989](https://github.com/PyTorchLightning/pytorch-lightning/pull/8989)) - Deprecated Accelerator collective API `barrier`, `broadcast`, and `all_gather` in favor of calling the `TrainingTypePlugin` collective API directly ([#9677](https://github.com/PyTorchLightning/pytorch-lightning/pull/9677)) - Deprecated `checkpoint_callback` from the `Trainer` constructor in favor of `enable_checkpointing` ([#9754](https://github.com/PyTorchLightning/pytorch-lightning/pull/9754)) - Deprecated the `LightningModule.on_post_move_to_device` method ([#9525](https://github.com/PyTorchLightning/pytorch-lightning/pull/9525)) - Deprecated `pytorch_lightning.core.decorators.parameter_validation` in favor of `pytorch_lightning.utilities.parameter_tying.set_shared_parameters` ([#9525](https://github.com/PyTorchLightning/pytorch-lightning/pull/9525)) - Deprecated passing `weights_summary` to the `Trainer` constructor in favor of adding the `ModelSummary` callback with `max_depth` directly to the list of callbacks ([#9699](https://github.com/PyTorchLightning/pytorch-lightning/pull/9699)) - Deprecated `log_gpu_memory`, `gpu_metrics`, and util funcs in favor of `DeviceStatsMonitor` callback ([#9921](https://github.com/PyTorchLightning/pytorch-lightning/pull/9921)) - Deprecated `GPUStatsMonitor` and `XLAStatsMonitor` in favor of `DeviceStatsMonitor` callback ([#9924](https://github.com/PyTorchLightning/pytorch-lightning/pull/9924)) - Deprecated setting `Trainer(max_steps=None)`; To turn off the limit, set `Trainer(max_steps=-1)` (default) ([#9460](https://github.com/PyTorchLightning/pytorch-lightning/pull/9460)) - Deprecated access to the `AcceleratorConnector.is_slurm_managing_tasks` attribute and marked it as protected ([#10101](https://github.com/PyTorchLightning/pytorch-lightning/pull/10101)) - Deprecated access to the `AcceleratorConnector.configure_slurm_ddp` method and marked it as protected ([#10101](https://github.com/PyTorchLightning/pytorch-lightning/pull/10101)) - Deprecated passing `resume_from_checkpoint` to the `Trainer` constructor in favor of `trainer.fit(ckpt_path=)` ([#10061](https://github.com/PyTorchLightning/pytorch-lightning/pull/10061)) - Deprecated `ClusterEnvironment.creates_children()` in favor of `ClusterEnvironment.creates_processes_externally` (property) ([#10106](https://github.com/PyTorchLightning/pytorch-lightning/pull/10106)) - Deprecated `PrecisionPlugin.master_params()` in favor of `PrecisionPlugin.main_params()` ([#10105](https://github.com/PyTorchLightning/pytorch-lightning/pull/10105)) - Deprecated `lr_sch_names` from `LearningRateMonitor` ([#10066](https://github.com/PyTorchLightning/pytorch-lightning/pull/10066)) - Deprecated `ProgressBar` callback in favor of `TQDMProgressBar` ([#10134](https://github.com/PyTorchLightning/pytorch-lightning/pull/10134)) ### Removed - Removed deprecated `metrics` ([#8586](https://github.com/PyTorchLightning/pytorch-lightning/pull/8586/)) - Removed the deprecated `outputs` argument in both the `LightningModule.on_train_epoch_end` and `Callback.on_train_epoch_end` hooks ([#8587](https://github.com/PyTorchLightning/pytorch-lightning/pull/8587)) - Removed the deprecated `TrainerLoggingMixin` class ([#8609](https://github.com/PyTorchLightning/pytorch-lightning/pull/8609)) - Removed the deprecated `TrainerTrainingTricksMixin` class ([#8679](https://github.com/PyTorchLightning/pytorch-lightning/pull/8679)) - Removed the deprecated `optimizer_idx` from `training_step` as an accepted argument in manual optimization ([#8576](https://github.com/PyTorchLightning/pytorch-lightning/pull/8576)) - Removed support for the deprecated `on_save_checkpoint` signature. The hook now takes a `checkpoint` positional parameter ([#8697](https://github.com/PyTorchLightning/pytorch-lightning/pull/8697)) - Removed support for the deprecated `on_load_checkpoint` signature. The hook now takes a `pl_module` positional parameter ([#8697](https://github.com/PyTorchLightning/pytorch-lightning/pull/8697)) - Removed the deprecated `save_function` property in `ModelCheckpoint` ([#8680](https://github.com/PyTorchLightning/pytorch-lightning/pull/8680)) - Removed the deprecated `model` argument from `ModelCheckpoint.save_checkpoint` ([#8688](https://github.com/PyTorchLightning/pytorch-lightning/pull/8688)) - Removed the deprecated `sync_step` argument from `WandbLogger` ([#8763](https://github.com/PyTorchLightning/pytorch-lightning/pull/8763)) - Removed the deprecated `Trainer.truncated_bptt_steps` in favor of `LightningModule.truncated_bptt_steps` ([#8826](https://github.com/PyTorchLightning/pytorch-lightning/pull/8826)) - Removed `LightningModule.write_predictions` and `LightningModule.write_predictions_dict` ([#8850](https://github.com/PyTorchLightning/pytorch-lightning/pull/8850)) - Removed `on_reset_*_dataloader` hooks in TrainingType Plugins and Accelerators ([#8858](https://github.com/PyTorchLightning/pytorch-lightning/pull/8858)) - Removed deprecated `GradInformation` module in favor of `pytorch_lightning.utilities.grads` ([#8831](https://github.com/PyTorchLightning/pytorch-lightning/pull/8831/)) - Removed `TrainingTypePlugin.on_save` and `Accelerator.on_save` ([#9023](https://github.com/PyTorchLightning/pytorch-lightning/pull/9023)) - Removed `{Accelerator,TrainingTypePlugin,PrecisionPlugin}.post_optimizer_step` ([#9746](https://github.com/PyTorchLightning/pytorch-lightning/pull/9746)) - Removed deprecated `connect_precision_plugin` and `connect_training_type_plugin` from `Accelerator` ([#9019](https://github.com/PyTorchLightning/pytorch-lightning/pull/9019)) - Removed `on_train_epoch_end` from `Accelerator` ([#9035](https://github.com/PyTorchLightning/pytorch-lightning/pull/9035)) - Removed `InterBatchProcessor` in favor of `DataLoaderIterDataFetcher` ([#9052](https://github.com/PyTorchLightning/pytorch-lightning/pull/9052)) - Removed `Plugin` in `base_plugin.py` in favor of accessing `TrainingTypePlugin` and `PrecisionPlugin` directly instead ([#9066](https://github.com/PyTorchLightning/pytorch-lightning/pull/9066)) - Removed `teardown` from `ParallelPlugin` ([#8943](https://github.com/PyTorchLightning/pytorch-lightning/pull/8943)) - Removed deprecated `profiled_functions` argument from `PyTorchProfiler` ([#9178](https://github.com/PyTorchLightning/pytorch-lightning/pull/9178)) - Removed deprecated `pytorch_lighting.utilities.argparse_utils` module ([#9166](https://github.com/PyTorchLightning/pytorch-lightning/pull/9166)) - Removed deprecated property `Trainer.running_sanity_check` in favor of `Trainer.sanity_checking` ([#9209](https://github.com/PyTorchLightning/pytorch-lightning/pull/9209)) - Removed deprecated `BaseProfiler.output_filename` arg from it and its descendants in favor of `dirpath` and `filename` ([#9214](https://github.com/PyTorchLightning/pytorch-lightning/pull/9214)) - Removed deprecated property `ModelCheckpoint.period` in favor of `ModelCheckpoint.every_n_epochs` ([#9213](https://github.com/PyTorchLightning/pytorch-lightning/pull/9213)) - Removed deprecated `auto_move_data` decorator ([#9231](https://github.com/PyTorchLightning/pytorch-lightning/pull/9231)) - Removed deprecated property `LightningModule.datamodule` in favor of `Trainer.datamodule` ([#9233](https://github.com/PyTorchLightning/pytorch-lightning/pull/9233)) - Removed deprecated properties `DeepSpeedPlugin.cpu_offload*` in favor of `offload_optimizer`, `offload_parameters` and `pin_memory` ([#9244](https://github.com/PyTorchLightning/pytorch-lightning/pull/9244)) - Removed deprecated property `AcceleratorConnector.is_using_torchelastic` in favor of `TorchElasticEnvironment.is_using_torchelastic()` ([#9729](https://github.com/PyTorchLightning/pytorch-lightning/pull/9729)) - Removed `pytorch_lightning.utilities.debugging.InternalDebugger` ([#9680](https://github.com/PyTorchLightning/pytorch-lightning/pull/9680)) - Removed `call_configure_sharded_model_hook` property from `Accelerator` and `TrainingTypePlugin` ([#9612](https://github.com/PyTorchLightning/pytorch-lightning/pull/9612)) - Removed `TrainerProperties` mixin and moved property definitions directly into `Trainer` ([#9495](https://github.com/PyTorchLightning/pytorch-lightning/pull/9495)) - Removed a redundant warning with `ModelCheckpoint(monitor=None)` callback ([#9875](https://github.com/PyTorchLightning/pytorch-lightning/pull/9875)) - Remove `epoch` from `trainer.logged_metrics` ([#9904](https://github.com/PyTorchLightning/pytorch-lightning/pull/9904)) - Remove deprecated `distributed_backend` from `Trainer` ([#10017](https://github.com/PyTorchLightning/pytorch-lightning/pull/10017)) - Removed `process_idx` from the `{DDPSpawnPlugin,TPUSpawnPlugin}.new_process` methods ([#10022](https://github.com/PyTorchLightning/pytorch-lightning/pull/10022)) - Removed automatic patching of `{train,val,test,predict}_dataloader()` on the `LightningModule` ([#9764](https://github.com/PyTorchLightning/pytorch-lightning/pull/9764)) - Removed `pytorch_lightning.trainer.connectors.OptimizerConnector` ([#10120](https://github.com/PyTorchLightning/pytorch-lightning/pull/10120)) ### Fixed - Fixed ImageNet evaluation in example ([#10179](https://github.com/PyTorchLightning/pytorch-lightning/pull/10179)) - Fixed an issue with logger outputs not being finalized correctly after prediction runs ([#8685](https://github.com/PyTorchLightning/pytorch-lightning/pull/8685)) - Fixed `move_metrics_to_cpu` moving the loss to CPU while training on device ([#9308](https://github.com/PyTorchLightning/pytorch-lightning/pull/9308)) - Fixed incorrect main progress bar indicator when resuming training mid-epoch ([#9310](https://github.com/PyTorchLightning/pytorch-lightning/pull/9310)) - Fixed an issue with freeing memory of datafetchers during teardown ([#9387](https://github.com/PyTorchLightning/pytorch-lightning/pull/9387)) - Fixed a bug where the training step output needed to be `deepcopy`-ed ([#9349](https://github.com/PyTorchLightning/pytorch-lightning/pull/9349)) - Fixed an issue with freeing memory allocated by the data iterators in `Loop.on_run_end` ([#9386](https://github.com/PyTorchLightning/pytorch-lightning/pull/9386), [#9915](https://github.com/PyTorchLightning/pytorch-lightning/pull/9915)) - Fixed `BasePredictionWriter` not returning the batch indices in a non-distributed setting ([#9432](https://github.com/PyTorchLightning/pytorch-lightning/pull/9432)) - Fixed an error when running in XLA environments with no TPU attached ([#9572](https://github.com/PyTorchLightning/pytorch-lightning/pull/9572)) - Fixed check on torchmetrics logged whose `compute()` output is a multielement tensor ([#9582](https://github.com/PyTorchLightning/pytorch-lightning/pull/9582)) - Fixed gradient accumulation for `DDPShardedPlugin` ([#9122](https://github.com/PyTorchLightning/pytorch-lightning/pull/9122)) - Fixed missing DeepSpeed distributed call ([#9540](https://github.com/PyTorchLightning/pytorch-lightning/pull/9540)) - Fixed an issue with wrapped LightningModule during evaluation; The LightningModule no longer gets wrapped with data-parallel modules when not fitting in `DDPPlugin`, `DDPSpawnPlugin`, `DDPShardedPlugin`, `DDPSpawnShardedPlugin` ([#9096](https://github.com/PyTorchLightning/pytorch-lightning/pull/9096)) - Fixed `trainer.accumulate_grad_batches` to be an int on init. The default value for it is now `None` inside Trainer ([#9652](https://github.com/PyTorchLightning/pytorch-lightning/pull/9652)) - Fixed `broadcast` in `DDPPlugin` and `DDPSpawnPlugin` to respect the `src` input ([#9691](https://github.com/PyTorchLightning/pytorch-lightning/pull/9691)) - Fixed `self.log(on_epoch=True, reduce_fx=sum))` for the `on_batch_start` and `on_train_batch_start` hooks ([#9791](https://github.com/PyTorchLightning/pytorch-lightning/pull/9791)) - Fixed `self.log(on_epoch=True)` for the `on_batch_start` and `on_train_batch_start` hooks ([#9780](https://github.com/PyTorchLightning/pytorch-lightning/pull/9780)) - Fixed restoring training state during `Trainer.fit` only ([#9413](https://github.com/PyTorchLightning/pytorch-lightning/pull/9413)) - Fixed DeepSpeed and Lightning both calling the scheduler ([#9788](https://github.com/PyTorchLightning/pytorch-lightning/pull/9788)) - Fixed missing arguments when saving hyperparameters from the parent class but not from the child class ([#9800](https://github.com/PyTorchLightning/pytorch-lightning/pull/9800)) - Fixed DeepSpeed GPU device IDs ([#9847](https://github.com/PyTorchLightning/pytorch-lightning/pull/9847)) - Reset `val_dataloader` in `tuner/batch_size_scaling` ([#9857](https://github.com/PyTorchLightning/pytorch-lightning/pull/9857)) - Fixed use of `LightningCLI` in computer_vision_fine_tuning.py example ([#9934](https://github.com/PyTorchLightning/pytorch-lightning/pull/9934)) - Fixed issue with non-init dataclass fields in `apply_to_collection` ([#9963](https://github.com/PyTorchLightning/pytorch-lightning/issues/9963)) - Reset `val_dataloader` in `tuner/batch_size_scaling` for binsearch ([#9975](https://github.com/PyTorchLightning/pytorch-lightning/pull/9975)) - Fixed logic to check for spawn in dataloader `TrainerDataLoadingMixin._worker_check` ([#9902](https://github.com/PyTorchLightning/pytorch-lightning/pull/9902)) - Fixed `train_dataloader` getting loaded twice when resuming from a checkpoint during `Trainer.fit()` ([#9671](https://github.com/PyTorchLightning/pytorch-lightning/pull/9671)) - Fixed `LearningRateMonitor` logging with multiple param groups optimizer with no scheduler ([#10044](https://github.com/PyTorchLightning/pytorch-lightning/pull/10044)) - Fixed undesired side effects being caused by `Trainer` patching dataloader methods on the `LightningModule` ([#9764](https://github.com/PyTorchLightning/pytorch-lightning/pull/9764)) - Fixed gradients not being unscaled when clipping or logging the gradient norm ([#9287](https://github.com/PyTorchLightning/pytorch-lightning/pull/9287)) - Fixed `on_before_optimizer_step` getting called before the optimizer closure (including backward) has run ([#10167](https://github.com/PyTorchLightning/pytorch-lightning/pull/10167)) - Fixed monitor value in `ModelCheckpoint` getting moved to the wrong device in a special case where it becomes NaN ([#10118](https://github.com/PyTorchLightning/pytorch-lightning/pull/10118)) - Fixed creation of `dirpath` in `BaseProfiler` if it doesn't exist ([#10073](https://github.com/PyTorchLightning/pytorch-lightning/pull/10073)) - Fixed incorrect handling of sigterm ([#10189](https://github.com/PyTorchLightning/pytorch-lightning/pull/10189)) - Fixed bug where `log(on_step=True, on_epoch=True, sync_dist=True)` wouldn't reduce the value on step ([#10227](https://github.com/PyTorchLightning/pytorch-lightning/pull/10227)) - Fixed an issue with `pl.utilities.seed.reset_seed` converting the `PL_SEED_WORKERS` environment variable to `bool` ([#10099](https://github.com/PyTorchLightning/pytorch-lightning/pull/10099)) - Fixed iterating over a logger collection when `fast_dev_run > 0` ([#10232](https://github.com/PyTorchLightning/pytorch-lightning/pull/10232)) - Fixed `batch_size` in `ResultCollection` not being reset to 1 on epoch end ([#10242](https://github.com/PyTorchLightning/pytorch-lightning/pull/10242)) - Fixed `distrib_type` not being set when training plugin instances are being passed to the Trainer ([#10251](https://github.com/PyTorchLightning/pytorch-lightning/pull/10251)) ## [1.4.9] - 2021-09-30 - Fixed `lr_find` to generate same results on multiple calls ([#9704](https://github.com/PyTorchLightning/pytorch-lightning/pull/9704)) - Fixed `reset` metrics on validation epoch end ([#9717](https://github.com/PyTorchLightning/pytorch-lightning/pull/9717)) - Fixed input validation for `gradient_clip_val`, `gradient_clip_algorithm`, `track_grad_norm` and `terminate_on_nan` Trainer arguments ([#9595](https://github.com/PyTorchLightning/pytorch-lightning/pull/9595)) - Reset metrics before each task starts ([#9410](https://github.com/PyTorchLightning/pytorch-lightning/pull/9410)) ## [1.4.8] - 2021-09-22 - Fixed error reporting in DDP process reconciliation when processes are launched by an external agent ([#9389](https://github.com/PyTorchLightning/pytorch-lightning/pull/9389)) - Added PL_RECONCILE_PROCESS environment variable to enable process reconciliation regardless of cluster environment settings ([#9389](https://github.com/PyTorchLightning/pytorch-lightning/pull/9389)) - Fixed `add_argparse_args` raising `TypeError` when args are typed as `typing.Generic` in Python 3.6 ([#9554](https://github.com/PyTorchLightning/pytorch-lightning/pull/9554)) - Fixed back-compatibility for saving hyperparameters from a single container and inferring its argument name by reverting [#9125](https://github.com/PyTorchLightning/pytorch-lightning/pull/9125) ([#9642](https://github.com/PyTorchLightning/pytorch-lightning/pull/9642)) ## [1.4.7] - 2021-09-14 - Fixed logging of nan parameters ([#9364](https://github.com/PyTorchLightning/pytorch-lightning/pull/9364)) - Fixed `replace_sampler` missing the batch size under specific conditions ([#9367](https://github.com/PyTorchLightning/pytorch-lightning/pull/9367)) - Pass init args to ShardedDataParallel ([#9483](https://github.com/PyTorchLightning/pytorch-lightning/pull/9483)) - Fixed collision of user argument when using ShardedDDP ([#9512](https://github.com/PyTorchLightning/pytorch-lightning/pull/9512)) - Fixed DeepSpeed crash for RNNs ([#9489](https://github.com/PyTorchLightning/pytorch-lightning/pull/9489)) ## [1.4.6] - 2021-09-07 - Fixed an issues with export to ONNX format when a model has multiple inputs ([#8800](https://github.com/PyTorchLightning/pytorch-lightning/pull/8800)) - Removed deprecation warnings being called for `on_{task}_dataloader` ([#9279](https://github.com/PyTorchLightning/pytorch-lightning/pull/9279)) - Fixed save/load/resume from checkpoint for DeepSpeed Plugin ( [#8397](https://github.com/PyTorchLightning/pytorch-lightning/pull/8397), [#8644](https://github.com/PyTorchLightning/pytorch-lightning/pull/8644), [#8627](https://github.com/PyTorchLightning/pytorch-lightning/pull/8627)) - Fixed `EarlyStopping` running on train epoch end when `check_val_every_n_epoch>1` is set ([#9156](https://github.com/PyTorchLightning/pytorch-lightning/pull/9156)) - Fixed an issue with logger outputs not being finalized correctly after prediction runs ([#8333](https://github.com/PyTorchLightning/pytorch-lightning/issues/8333)) - Fixed the Apex and DeepSpeed plugin closure running after the `on_before_optimizer_step` hook ([#9288](https://github.com/PyTorchLightning/pytorch-lightning/issues/9288)) - Fixed the Native AMP plugin closure not running with manual optimization ([#9288](https://github.com/PyTorchLightning/pytorch-lightning/issues/9288)) - Fixed bug where data-loading functions where not getting the correct running stage passed ([#8858](https://github.com/PyTorchLightning/pytorch-lightning/pull/8858)) - Fixed intra-epoch evaluation outputs staying in memory when the respective `*_epoch_end` hook wasn't overridden ([#9261](https://github.com/PyTorchLightning/pytorch-lightning/pull/9261)) - Fixed error handling in DDP process reconciliation when `_sync_dir` was not initialized ([#9267](https://github.com/PyTorchLightning/pytorch-lightning/pull/9267)) - Fixed PyTorch Profiler not enabled for manual optimization ([#9316](https://github.com/PyTorchLightning/pytorch-lightning/pull/9316)) - Fixed inspection of other args when a container is specified in `save_hyperparameters` ([#9125](https://github.com/PyTorchLightning/pytorch-lightning/pull/9125)) - Fixed signature of `Timer.on_train_epoch_end` and `StochasticWeightAveraging.on_train_epoch_end` to prevent unwanted deprecation warnings ([#9347](https://github.com/PyTorchLightning/pytorch-lightning/pull/9347)) ## [1.4.5] - 2021-08-31 - Fixed reduction using `self.log(sync_dict=True, reduce_fx={mean,max})` ([#9142](https://github.com/PyTorchLightning/pytorch-lightning/pull/9142)) - Fixed not setting a default value for `max_epochs` if `max_time` was specified on the `Trainer` constructor ([#9072](https://github.com/PyTorchLightning/pytorch-lightning/pull/9072)) - Fixed the CometLogger, no longer modifies the metrics in place. Instead creates a copy of metrics before performing any operations ([#9150](https://github.com/PyTorchLightning/pytorch-lightning/pull/9150)) - Fixed `DDP` "CUDA error: initialization error" due to a `copy` instead of `deepcopy` on `ResultCollection` ([#9239](https://github.com/PyTorchLightning/pytorch-lightning/pull/9239)) ## [1.4.4] - 2021-08-24 - Fixed a bug in the binary search mode of auto batch size scaling where exception was raised if the first trainer run resulted in OOM ([#8954](https://github.com/PyTorchLightning/pytorch-lightning/pull/8954)) - Fixed a bug causing logging with `log_gpu_memory='min_max'` not working ([#9013](https://github.com/PyTorchLightning/pytorch-lightning/pull/9013)) ## [1.4.3] - 2021-08-17 - Fixed plateau scheduler stepping on incomplete epoch ([#8861](https://github.com/PyTorchLightning/pytorch-lightning/pull/8861)) - Fixed infinite loop with `CycleIterator` and multiple loaders ([#8889](https://github.com/PyTorchLightning/pytorch-lightning/pull/8889)) - Fixed `StochasticWeightAveraging` with a list of learning rates not applying them to each param group ([#8747](https://github.com/PyTorchLightning/pytorch-lightning/issues/8747)) - Restore original loaders if replaced by entrypoint ([#8885](https://github.com/PyTorchLightning/pytorch-lightning/pull/8885)) - Fixed lost reference to `_Metadata` object in `ResultMetricCollection` ([#8932](https://github.com/PyTorchLightning/pytorch-lightning/pull/8932)) - Ensure the existence of `DDPPlugin._sync_dir` in `reconciliate_processes` ([#8939](https://github.com/PyTorchLightning/pytorch-lightning/pull/8939)) ## [1.4.2] - 2021-08-10 - Fixed recursive call for `apply_to_collection(include_none=False)` ([#8719](https://github.com/PyTorchLightning/pytorch-lightning/pull/8719)) - Fixed truncated backprop through time enablement when set as a property on the LightningModule and not the Trainer ([#8804](https://github.com/PyTorchLightning/pytorch-lightning/pull/8804/)) - Fixed comments and exception message for metrics_to_scalars ([#8782](https://github.com/PyTorchLightning/pytorch-lightning/pull/8782/)) - Fixed typo error in LightningLoggerBase.after_save_checkpoint docstring ([#8737](https://github.com/PyTorchLightning/pytorch-lightning/pull/8737/)) ## [1.4.1] - 2021-08-03 - Fixed `trainer.fit_loop.split_idx` always returning `None` ([#8601](https://github.com/PyTorchLightning/pytorch-lightning/pull/8601)) - Fixed references for `ResultCollection.extra` ([#8622](https://github.com/PyTorchLightning/pytorch-lightning/pull/8622)) - Fixed reference issues during epoch end result collection ([#8621](https://github.com/PyTorchLightning/pytorch-lightning/pull/8621)) - Fixed horovod auto-detection when horovod is not installed and the launcher is `mpirun` ([#8610](https://github.com/PyTorchLightning/pytorch-lightning/pull/8610)) - Fixed an issue with `training_step` outputs not getting collected correctly for `training_epoch_end` ([#8613](https://github.com/PyTorchLightning/pytorch-lightning/pull/8613)) - Fixed distributed types support for CPUs ([#8667](https://github.com/PyTorchLightning/pytorch-lightning/pull/8667)) - Fixed a deadlock issue with DDP and torchelastic ([#8655](https://github.com/PyTorchLightning/pytorch-lightning/pull/8655)) - Fixed `accelerator=ddp` choice for CPU ([#8645](https://github.com/PyTorchLightning/pytorch-lightning/pull/8645)) ## [1.4.0] - 2021-07-27 ### Added - Added `extract_batch_size` utility and corresponding tests to extract batch dimension from multiple batch types ([#8357](https://github.com/PyTorchLightning/pytorch-lightning/pull/8357/)) - Added support for named parameter groups in `LearningRateMonitor` ([#7987](https://github.com/PyTorchLightning/pytorch-lightning/pull/7987)) - Added `dataclass` support for `pytorch_lightning.utilities.apply_to_collection` ([#7935](https://github.com/PyTorchLightning/pytorch-lightning/pull/7935)) - Added support to `LightningModule.to_torchscript` for saving to custom filesystems with `fsspec` ([#7617](https://github.com/PyTorchLightning/pytorch-lightning/pull/7617)) - Added `KubeflowEnvironment` for use with the `PyTorchJob` operator in Kubeflow - Added LightningCLI support for config files on object stores ([#7521](https://github.com/PyTorchLightning/pytorch-lightning/pull/7521)) - Added `ModelPruning(prune_on_train_epoch_end=True|False)` to choose when to apply pruning ([#7704](https://github.com/PyTorchLightning/pytorch-lightning/pull/7704)) - Added support for checkpointing based on a provided time interval during training ([#7515](https://github.com/PyTorchLightning/pytorch-lightning/pull/7515)) - Progress tracking * Added dataclasses for progress tracking ([#6603](https://github.com/PyTorchLightning/pytorch-lightning/pull/6603), [#7574](https://github.com/PyTorchLightning/pytorch-lightning/pull/7574), [#8140](https://github.com/PyTorchLightning/pytorch-lightning/pull/8140), [#8362](https://github.com/PyTorchLightning/pytorch-lightning/pull/8362)) * Add `{,load_}state_dict` to the progress tracking dataclasses ([#8140](https://github.com/PyTorchLightning/pytorch-lightning/pull/8140)) * Connect the progress tracking dataclasses to the loops ([#8244](https://github.com/PyTorchLightning/pytorch-lightning/pull/8244), [#8362](https://github.com/PyTorchLightning/pytorch-lightning/pull/8362)) * Do not reset the progress tracking dataclasses total counters ([#8475](https://github.com/PyTorchLightning/pytorch-lightning/pull/8475)) - Added support for passing a `LightningDataModule` positionally as the second argument to `trainer.{validate,test,predict}` ([#7431](https://github.com/PyTorchLightning/pytorch-lightning/pull/7431)) - Added argument `trainer.predict(ckpt_path)` ([#7430](https://github.com/PyTorchLightning/pytorch-lightning/pull/7430)) - Added `clip_grad_by_value` support for TPUs ([#7025](https://github.com/PyTorchLightning/pytorch-lightning/pull/7025)) - Added support for passing any class to `is_overridden` ([#7918](https://github.com/PyTorchLightning/pytorch-lightning/pull/7918)) - Added `sub_dir` parameter to `TensorBoardLogger` ([#6195](https://github.com/PyTorchLightning/pytorch-lightning/pull/6195)) - Added correct `dataloader_idx` to batch transfer hooks ([#6241](https://github.com/PyTorchLightning/pytorch-lightning/pull/6241)) - Added `include_none=bool` argument to `apply_to_collection` ([#7769](https://github.com/PyTorchLightning/pytorch-lightning/pull/7769)) - Added `apply_to_collections` to apply a function to two zipped collections ([#7769](https://github.com/PyTorchLightning/pytorch-lightning/pull/7769)) - Added `ddp_fully_sharded` support ([#7487](https://github.com/PyTorchLightning/pytorch-lightning/pull/7487)) - Added `should_rank_save_checkpoint` property to Training Plugins ([#7684](https://github.com/PyTorchLightning/pytorch-lightning/pull/7684)) - Added `log_grad_norm` hook to `LightningModule` to customize the logging of gradient norms ([#7873](https://github.com/PyTorchLightning/pytorch-lightning/pull/7873)) - Added `save_config_filename` init argument to `LightningCLI` to ease resolving name conflicts ([#7741](https://github.com/PyTorchLightning/pytorch-lightning/pull/7741)) - Added `save_config_overwrite` init argument to `LightningCLI` to ease overwriting existing config files ([#8059](https://github.com/PyTorchLightning/pytorch-lightning/pull/8059)) - Added reset dataloader hooks to Training Plugins and Accelerators ([#7861](https://github.com/PyTorchLightning/pytorch-lightning/pull/7861)) - Added trainer stage hooks for Training Plugins and Accelerators ([#7864](https://github.com/PyTorchLightning/pytorch-lightning/pull/7864)) - Added the `on_before_optimizer_step` hook ([#8048](https://github.com/PyTorchLightning/pytorch-lightning/pull/8048)) - Added IPU Accelerator ([#7867](https://github.com/PyTorchLightning/pytorch-lightning/pull/7867)) - Fault-tolerant training * Added `{,load_}state_dict` to `ResultCollection` ([#7948](https://github.com/PyTorchLightning/pytorch-lightning/pull/7948)) * Added `{,load_}state_dict` to `Loops` ([#8197](https://github.com/PyTorchLightning/pytorch-lightning/pull/8197)) * Added `FastForwardSampler` and `CaptureIterableDataset` ([#8307](https://github.com/PyTorchLightning/pytorch-lightning/pull/8307)) * Set `Loop.restarting=False` at the end of the first iteration ([#8362](https://github.com/PyTorchLightning/pytorch-lightning/pull/8362)) * Save the loops state with the checkpoint (opt-in) ([#8362](https://github.com/PyTorchLightning/pytorch-lightning/pull/8362)) * Save a checkpoint to restore the state on exception (opt-in) ([#8362](https://github.com/PyTorchLightning/pytorch-lightning/pull/8362)) * Added `state_dict` and `load_state_dict` utilities for `CombinedLoader` + utilities for dataloader ([#8364](https://github.com/PyTorchLightning/pytorch-lightning/pull/8364)) - Added `rank_zero_only` to `LightningModule.log` function ([#7966](https://github.com/PyTorchLightning/pytorch-lightning/pull/7966)) - Added `metric_attribute` to `LightningModule.log` function ([#7966](https://github.com/PyTorchLightning/pytorch-lightning/pull/7966)) - Added a warning if `Trainer(log_every_n_steps)` is a value too high for the training dataloader ([#7734](https://github.com/PyTorchLightning/pytorch-lightning/pull/7734)) - Added LightningCLI support for argument links applied on instantiation ([#7895](https://github.com/PyTorchLightning/pytorch-lightning/pull/7895)) - Added LightningCLI support for configurable callbacks that should always be present ([#7964](https://github.com/PyTorchLightning/pytorch-lightning/pull/7964)) - Added DeepSpeed Infinity Support, and updated to DeepSpeed 0.4.0 ([#7234](https://github.com/PyTorchLightning/pytorch-lightning/pull/7234)) - Added support for `torch.nn.UninitializedParameter` in `ModelSummary` ([#7642](https://github.com/PyTorchLightning/pytorch-lightning/pull/7642)) - Added support `LightningModule.save_hyperparameters` when `LightningModule` is a dataclass ([#7992](https://github.com/PyTorchLightning/pytorch-lightning/pull/7992)) - Added support for overriding `optimizer_zero_grad` and `optimizer_step` when using accumulate_grad_batches ([#7980](https://github.com/PyTorchLightning/pytorch-lightning/pull/7980)) - Added `logger` boolean flag to `save_hyperparameters` ([#7960](https://github.com/PyTorchLightning/pytorch-lightning/pull/7960)) - Added support for calling scripts using the module syntax (`python -m package.script`) ([#8073](https://github.com/PyTorchLightning/pytorch-lightning/pull/8073)) - Added support for optimizers and learning rate schedulers to `LightningCLI` ([#8093](https://github.com/PyTorchLightning/pytorch-lightning/pull/8093)) - Added XLA Profiler ([#8014](https://github.com/PyTorchLightning/pytorch-lightning/pull/8014)) - Added `PrecisionPlugin.{pre,post}_backward` ([#8328](https://github.com/PyTorchLightning/pytorch-lightning/pull/8328)) - Added `on_load_checkpoint` and `on_save_checkpoint` hooks to the `PrecisionPlugin` base class ([#7831](https://github.com/PyTorchLightning/pytorch-lightning/pull/7831)) - Added `max_depth` parameter in `ModelSummary` ([#8062](https://github.com/PyTorchLightning/pytorch-lightning/pull/8062)) - Added `XLAStatsMonitor` callback ([#8235](https://github.com/PyTorchLightning/pytorch-lightning/pull/8235)) - Added `restore` function and `restarting` attribute to base `Loop` ([#8247](https://github.com/PyTorchLightning/pytorch-lightning/pull/8247)) - Added support for `save_hyperparameters` in `LightningDataModule` ([#3792](https://github.com/PyTorchLightning/pytorch-lightning/pull/3792)) - Added the `ModelCheckpoint(save_on_train_epoch_end)` to choose when to run the saving logic ([#8389](https://github.com/PyTorchLightning/pytorch-lightning/pull/8389)) - Added `LSFEnvironment` for distributed training with the LSF resource manager `jsrun` ([#5102](https://github.com/PyTorchLightning/pytorch-lightning/pull/5102)) - Added support for `accelerator='cpu'|'gpu'|'tpu'|'ipu'|'auto'` ([#7808](https://github.com/PyTorchLightning/pytorch-lightning/pull/7808)) - Added `tpu_spawn_debug` to plugin registry ([#7933](https://github.com/PyTorchLightning/pytorch-lightning/pull/7933)) - Enabled traditional/manual launching of DDP processes through `LOCAL_RANK` and `NODE_RANK` environment variable assignments ([#7480](https://github.com/PyTorchLightning/pytorch-lightning/pull/7480)) - Added `quantize_on_fit_end` argument to `QuantizationAwareTraining` ([#8464](https://github.com/PyTorchLightning/pytorch-lightning/pull/8464)) - Added experimental support for loop specialization ([#8226](https://github.com/PyTorchLightning/pytorch-lightning/pull/8226)) - Added support for `devices` flag to Trainer ([#8440](https://github.com/PyTorchLightning/pytorch-lightning/pull/8440)) - Added private `prevent_trainer_and_dataloaders_deepcopy` context manager on the `LightningModule` ([#8472](https://github.com/PyTorchLightning/pytorch-lightning/pull/8472)) - Added support for providing callables to the Lightning CLI instead of types ([#8400](https://github.com/PyTorchLightning/pytorch-lightning/pull/8400)) ### Changed - Decoupled device parsing logic from Accelerator connector to Trainer ([#8180](https://github.com/PyTorchLightning/pytorch-lightning/pull/8180)) - Changed the `Trainer`'s `checkpoint_callback` argument to allow only boolean values ([#7539](https://github.com/PyTorchLightning/pytorch-lightning/pull/7539)) - Log epoch metrics before the `on_evaluation_end` hook ([#7272](https://github.com/PyTorchLightning/pytorch-lightning/pull/7272)) - Explicitly disallow calling `self.log(on_epoch=False)` during epoch-only or single-call hooks ([#7874](https://github.com/PyTorchLightning/pytorch-lightning/pull/7874)) - Changed these `Trainer` methods to be protected: `call_setup_hook`, `call_configure_sharded_model`, `pre_dispatch`, `dispatch`, `post_dispatch`, `call_teardown_hook`, `run_train`, `run_sanity_check`, `run_evaluate`, `run_evaluation`, `run_predict`, `track_output_for_epoch_end` - Changed `metrics_to_scalars` to work with any collection or value ([#7888](https://github.com/PyTorchLightning/pytorch-lightning/pull/7888)) - Changed `clip_grad_norm` to use `torch.nn.utils.clip_grad_norm_` ([#7025](https://github.com/PyTorchLightning/pytorch-lightning/pull/7025)) - Validation is now always run inside the training epoch scope ([#7357](https://github.com/PyTorchLightning/pytorch-lightning/pull/7357)) - `ModelCheckpoint` now runs at the end of the training epoch by default ([#8389](https://github.com/PyTorchLightning/pytorch-lightning/pull/8389)) - `EarlyStopping` now runs at the end of the training epoch by default ([#8286](https://github.com/PyTorchLightning/pytorch-lightning/pull/8286)) - Refactored Loops * Moved attributes `global_step`, `current_epoch`, `max/min_steps`, `max/min_epochs`, `batch_idx`, and `total_batch_idx` to TrainLoop ([#7437](https://github.com/PyTorchLightning/pytorch-lightning/pull/7437)) * Refactored result handling in training loop ([#7506](https://github.com/PyTorchLightning/pytorch-lightning/pull/7506)) * Moved attributes `hiddens` and `split_idx` to TrainLoop ([#7507](https://github.com/PyTorchLightning/pytorch-lightning/pull/7507)) * Refactored the logic around manual and automatic optimization inside the optimizer loop ([#7526](https://github.com/PyTorchLightning/pytorch-lightning/pull/7526)) * Simplified "should run validation" logic ([#7682](https://github.com/PyTorchLightning/pytorch-lightning/pull/7682)) * Simplified logic for updating the learning rate for schedulers ([#7682](https://github.com/PyTorchLightning/pytorch-lightning/pull/7682)) * Removed the `on_epoch` guard from the "should stop" validation check ([#7701](https://github.com/PyTorchLightning/pytorch-lightning/pull/7701)) * Refactored internal loop interface; added new classes `FitLoop`, `TrainingEpochLoop`, `TrainingBatchLoop` ([#7871](https://github.com/PyTorchLightning/pytorch-lightning/pull/7871), [#8077](https://github.com/PyTorchLightning/pytorch-lightning/pull/8077)) * Removed `pytorch_lightning/trainer/training_loop.py` ([#7985](https://github.com/PyTorchLightning/pytorch-lightning/pull/7985)) * Refactored evaluation loop interface; added new classes `DataLoaderLoop`, `EvaluationLoop`, `EvaluationEpochLoop` ([#7990](https://github.com/PyTorchLightning/pytorch-lightning/pull/7990), [#8077](https://github.com/PyTorchLightning/pytorch-lightning/pull/8077)) * Removed `pytorch_lightning/trainer/evaluation_loop.py` ([#8056](https://github.com/PyTorchLightning/pytorch-lightning/pull/8056)) * Restricted public access to several internal functions ([#8024](https://github.com/PyTorchLightning/pytorch-lightning/pull/8024)) * Refactored trainer `_run_*` functions and separate evaluation loops ([#8065](https://github.com/PyTorchLightning/pytorch-lightning/pull/8065)) * Refactored prediction loop interface; added new classes `PredictionLoop`, `PredictionEpochLoop` ([#7700](https://github.com/PyTorchLightning/pytorch-lightning/pull/7700), [#8077](https://github.com/PyTorchLightning/pytorch-lightning/pull/8077)) * Removed `pytorch_lightning/trainer/predict_loop.py` ([#8094](https://github.com/PyTorchLightning/pytorch-lightning/pull/8094)) * Moved result teardown to the loops ([#8245](https://github.com/PyTorchLightning/pytorch-lightning/pull/8245)) * Improve `Loop` API to better handle children `state_dict` and `progress` ([#8334](https://github.com/PyTorchLightning/pytorch-lightning/pull/8334)) - Refactored logging * Renamed and moved `core/step_result.py` to `trainer/connectors/logger_connector/result.py` ([#7736](https://github.com/PyTorchLightning/pytorch-lightning/pull/7736)) * Dramatically simplify the `LoggerConnector` ([#7882](https://github.com/PyTorchLightning/pytorch-lightning/pull/7882)) * `trainer.{logged,progress_bar,callback}_metrics` are now updated on-demand ([#7882](https://github.com/PyTorchLightning/pytorch-lightning/pull/7882)) * Completely overhaul the `Result` object in favor of `ResultMetric` ([#7882](https://github.com/PyTorchLightning/pytorch-lightning/pull/7882)) * Improve epoch-level reduction time and overall memory usage ([#7882](https://github.com/PyTorchLightning/pytorch-lightning/pull/7882)) * Allow passing `self.log(batch_size=...)` ([#7891](https://github.com/PyTorchLightning/pytorch-lightning/pull/7891)) * Each of the training loops now keeps its own results collection ([#7891](https://github.com/PyTorchLightning/pytorch-lightning/pull/7891)) * Remove `EpochResultStore` and `HookResultStore` in favor of `ResultCollection` ([#7909](https://github.com/PyTorchLightning/pytorch-lightning/pull/7909)) * Remove `MetricsHolder` ([#7909](https://github.com/PyTorchLightning/pytorch-lightning/pull/7909)) - Moved `ignore_scalar_return_in_dp` warning suppression to the DataParallelPlugin class ([#7421](https://github.com/PyTorchLightning/pytorch-lightning/pull/7421/)) - Changed the behaviour when logging evaluation step metrics to no longer append `/epoch_*` to the metric name ([#7351](https://github.com/PyTorchLightning/pytorch-lightning/pull/7351)) - Raised `ValueError` when a `None` value is `self.log`-ed ([#7771](https://github.com/PyTorchLightning/pytorch-lightning/pull/7771)) - Changed `resolve_training_type_plugins` to allow setting `num_nodes` and `sync_batchnorm` from `Trainer` setting ([#7026](https://github.com/PyTorchLightning/pytorch-lightning/pull/7026)) - Default `seed_everything(workers=True)` in the `LightningCLI` ([#7504](https://github.com/PyTorchLightning/pytorch-lightning/pull/7504)) - Changed `model.state_dict()` in `CheckpointConnector` to allow `training_type_plugin` to customize the model's `state_dict()` ([#7474](https://github.com/PyTorchLightning/pytorch-lightning/pull/7474)) - `MLflowLogger` now uses the env variable `MLFLOW_TRACKING_URI` as default tracking URI ([#7457](https://github.com/PyTorchLightning/pytorch-lightning/pull/7457)) - Changed `Trainer` arg and functionality from `reload_dataloaders_every_epoch` to `reload_dataloaders_every_n_epochs` ([#5043](https://github.com/PyTorchLightning/pytorch-lightning/pull/5043)) - Changed `WandbLogger(log_model={True/'all'})` to log models as artifacts ([#6231](https://github.com/PyTorchLightning/pytorch-lightning/pull/6231)) - MLFlowLogger now accepts `run_name` as an constructor argument ([#7622](https://github.com/PyTorchLightning/pytorch-lightning/issues/7622)) - Changed `teardown()` in `Accelerator` to allow `training_type_plugin` to customize `teardown` logic ([#7579](https://github.com/PyTorchLightning/pytorch-lightning/pull/7579)) - `Trainer.fit` now raises an error when using manual optimization with unsupported features such as `gradient_clip_val` or `accumulate_grad_batches` ([#7788](https://github.com/PyTorchLightning/pytorch-lightning/pull/7788)) - Accelerator hooks are called regardless if `LightningModule` overrides the same hooks ([#7826](https://github.com/PyTorchLightning/pytorch-lightning/pull/7826)) - Moved profilers to their own file ([#7822](https://github.com/PyTorchLightning/pytorch-lightning/pull/7822)) - The `on_after_backward` hook is now called on accumulating iterations. Use the `on_before_optimizer_step` hook to mimic the old behaviour ([#8328](https://github.com/PyTorchLightning/pytorch-lightning/pull/8328)) - The mixed precision loss is no longer unscaled before the `on_after_backward` hook. Use the `on_before_optimizer_step` hook to mimic the old behaviour ([#8328](https://github.com/PyTorchLightning/pytorch-lightning/pull/8328)) - The `TrainingTypePlugin.{pre,post}_backward` hooks no longer take the `optimizer, opt_idx, should_accumulate` arguments ([#8328](https://github.com/PyTorchLightning/pytorch-lightning/pull/8328)) - The `PrecisionPlugin.backward` hooks no longer returns a value ([#8328](https://github.com/PyTorchLightning/pytorch-lightning/pull/8328)) - The `PrecisionPlugin.backward` hooks no longer takes a `should_accumulate` argument ([#8328](https://github.com/PyTorchLightning/pytorch-lightning/pull/8328)) - Added the `on_before_backward` hook ([#7865](https://github.com/PyTorchLightning/pytorch-lightning/pull/7865)) - `LightningCLI` now aborts with a clearer message if config already exists and disables save config during `fast_dev_run`([#7963](https://github.com/PyTorchLightning/pytorch-lightning/pull/7963)) - Saved the `LightningCLI` config on `setup` and only on the main process ([#8017](https://github.com/PyTorchLightning/pytorch-lightning/pull/8017)) - Dropped the `LightningCLI` `ArgumentParser` when pickling ([#8017](https://github.com/PyTorchLightning/pytorch-lightning/pull/8017)) - Skip `broadcast` if distributed not initialized for the spawn plugins ([#8017](https://github.com/PyTorchLightning/pytorch-lightning/pull/8017)) - `Trainer(resume_from_checkpoint=...)` now restores the model directly after `LightningModule.setup()`, which is before `LightningModule.configure_sharded_model()` ([#7652](https://github.com/PyTorchLightning/pytorch-lightning/pull/7652)) - Moved `torch.cuda.set_device()` to enable collective calls earlier in setup ([#8312](https://github.com/PyTorchLightning/pytorch-lightning/pull/8312)) - Used XLA utility API to move data to CPU (Single TPU core) ([#8078](https://github.com/PyTorchLightning/pytorch-lightning/pull/8078)) - Improved error messages in `replace_sampler` when the `DataLoader` attributes are not included in the signature or the signature is missing optional arguments ([#8519](https://github.com/PyTorchLightning/pytorch-lightning/pull/8519)) - Moved `DeviceDtypeModuleMixin` and `HyperparametersMixin` mixin to `core` ([#8396](https://github.com/PyTorchLightning/pytorch-lightning/pull/8396)) - Return the `default_root_dir` as the `log_dir` when the logger is a `LoggerCollection` ([#8187](https://github.com/PyTorchLightning/pytorch-lightning/pull/8187)) ### Deprecated - Deprecated `LightningModule.loaded_optimizer_states_dict` ([#8229](https://github.com/PyTorchLightning/pytorch-lightning/pull/8229)) - Standardized the dataloaders arguments of `trainer.{fit,valdiate,test,tune}` ([#7431](https://github.com/PyTorchLightning/pytorch-lightning/pull/7431)) - Deprecated `DataModule` properties: `has_prepared_data`, `has_setup_fit`, `has_setup_validate`, `has_setup_test`, `has_setup_predict`, `has_teardown_fit`, `has_teardown_validate`, `has_teardown_test`, `has_teardown_predict` ([#7657](https://github.com/PyTorchLightning/pytorch-lightning/pull/7657/)) - Deprecated `TrainerModelHooksMixin` in favor of `pytorch_lightning.utilities.signature_utils` ([#7422](https://github.com/PyTorchLightning/pytorch-lightning/pull/7422)) - Deprecated `num_nodes` and `sync_batchnorm` arguments in `DDPPlugin` and `DDPSpawnPlugin` ([#7026](https://github.com/PyTorchLightning/pytorch-lightning/pull/7026)) - Deprecated `self.log(sync_dist_op)` in favor of `self.log(reduce_fx)`. ([#7891](https://github.com/PyTorchLightning/pytorch-lightning/pull/7891)) - Deprecated `is_overridden(model=...)` in favor of `is_overridden(instance=...)` ([#7918](https://github.com/PyTorchLightning/pytorch-lightning/pull/7918)) - Deprecated automatically detaching returned extras with grads ([#7994](https://github.com/PyTorchLightning/pytorch-lightning/pull/7994)) - Deprecated default value of `monitor` argument in EarlyStopping callback to enforce `monitor` as a required argument ([#7907](https://github.com/PyTorchLightning/pytorch-lightning/pull/7907)) - Deprecated importing `rank_zero_{warn,deprecation}` directly from `pytorch_lightning.utilities.distributed` ([#8085](https://github.com/PyTorchLightning/pytorch-lightning/pull/8085)) - Deprecated the use of `CheckpointConnector.hpc_load()` in favor of `CheckpointConnector.restore()` ([#7652](https://github.com/PyTorchLightning/pytorch-lightning/pull/7652)) - Deprecated `ModelCheckpoint(every_n_val_epochs)` in favor of `ModelCheckpoint(every_n_epochs)` ([#8383](https://github.com/PyTorchLightning/pytorch-lightning/pull/8383)) - Deprecated `DDPPlugin.task_idx` in favor of `DDPPlugin.local_rank` ([#8203](https://github.com/PyTorchLightning/pytorch-lightning/pull/8203)) - Deprecated the `Trainer.train_loop` property in favor of `Trainer.fit_loop` ([#8025](https://github.com/PyTorchLightning/pytorch-lightning/pull/8025)) - Deprecated the `Trainer.disable_validation` property in favor of `not Trainer.enable_validation` ([#8291](https://github.com/PyTorchLightning/pytorch-lightning/pull/8291)) - Deprecated `mode` parameter in `ModelSummary` in favor of `max_depth` ([#8062](https://github.com/PyTorchLightning/pytorch-lightning/pull/8062)) - Deprecated `reload_dataloaders_every_epoch` argument of `Trainer` in favor of `reload_dataloaders_every_n_epochs` ([#5043](https://github.com/PyTorchLightning/pytorch-lightning/pull/5043)) - Deprecated `distributed_backend` argument for `Trainer` ([#8575](https://github.com/PyTorchLightning/pytorch-lightning/pull/8575)) ### Removed - Dropped official support/testing for PyTorch <1.6 ([#8288](https://github.com/PyTorchLightning/pytorch-lightning/pull/8288)) - Removed `ProfilerConnector` ([#7654](https://github.com/PyTorchLightning/pytorch-lightning/pull/7654)) - Pruned deprecated classif. metrics from `pytorch_lightning.metrics.functional.classification` ([#7499](https://github.com/PyTorchLightning/pytorch-lightning/pull/7499)) - Removed deprecated data parallel classes `LightningDataParallel` and `LightningDistributedDataParallel` from `pytorch_lightning.overrides.data_parallel` ([#7510](https://github.com/PyTorchLightning/pytorch-lightning/pull/7510)) - Removed deprecated trainer attributes - `get_model` and `accelerator_backend` ([#7502](https://github.com/PyTorchLightning/pytorch-lightning/pull/7502)) - Removed support for automatically monitoring the `val_loss` key with `ModelCheckpoint`. Pass your `monitor` of choice to the `ModelCheckpoint` instance instead ([#8293](https://github.com/PyTorchLightning/pytorch-lightning/pull/8293)) - Removed support for `self.log(tbptt_reduce_fx)` and `self.log(tbptt_pad_token)`. Please, open a discussion explaining your use-case if you relied on these. ([#7644](https://github.com/PyTorchLightning/pytorch-lightning/pull/7644)) - Removed deprecated utils modules `model_utils`, `warning_utils`, `xla_device_utils` and partially `argparse_utils` ([#7503](https://github.com/PyTorchLightning/pytorch-lightning/pull/7503)) - Removed `RPCPlugin` and `RPCSequentialPlugin`. If you were successfully using these plugins, please open a GitHub discussion about your use case ([#8101](https://github.com/PyTorchLightning/pytorch-lightning/pull/8101)) - Removed deprecated trainer attributes - `on_cpu`, `on_tpu`, `use_tpu`, `on_gpu`, `use_dp`, `use_ddp`, `use_ddp2`, `use_horovod`, `use_single_gpu` ([#7501](https://github.com/PyTorchLightning/pytorch-lightning/pull/7501)) - Removed deprecated `optimizer` argument in `LightningModule.manual_backward()`; Toggling optimizers in manual optimization should be done using `LightningModule.{un}toggle_optimizer()` ([#8287](https://github.com/PyTorchLightning/pytorch-lightning/pull/8287)) - Removed DeepSpeed FP16 Exception as FP32 is now supported ([#8462](https://github.com/PyTorchLightning/pytorch-lightning/pull/8462)) - Removed environment variable `PL_EXP_VERSION` from DDP subprocesses ([7403](https://github.com/PyTorchLightning/pytorch-lightning/pull/7403)) ### Fixed - Fixed the `GPUStatsMonitor` callbacks to use the correct GPU IDs if `CUDA_VISIBLE_DEVICES` set ([#8260](https://github.com/PyTorchLightning/pytorch-lightning/pull/8260)) - Fixed `lr_scheduler` checkpointed state by calling `update_lr_schedulers` before saving checkpoints ([#7877](https://github.com/PyTorchLightning/pytorch-lightning/pull/7877)) - Fixed ambiguous warning when both overfit and train dataloader shuffling are enabled ([#7685](https://github.com/PyTorchLightning/pytorch-lightning/pull/7685)) - Fixed dev debugger memory growing due to tracking events even when disabled ([#7875](https://github.com/PyTorchLightning/pytorch-lightning/pull/7875)) - Fixed `None` loss keys getting added in `training_epoch_end` when using manual optimization and not returning a loss ([#7772](https://github.com/PyTorchLightning/pytorch-lightning/pull/7772)) - Fixed a bug where `precision=64` with `accelerator='ddp_spawn'` would throw a pickle error ([#6924](https://github.com/PyTorchLightning/pytorch-lightning/pull/6924)) - Do not override the existing `epoch` value in `logged_metrics` when already logged by the user ([#7982](https://github.com/PyTorchLightning/pytorch-lightning/issues/7982)) - Support for manual optimization with DeepSpeed ([#7970](https://github.com/PyTorchLightning/pytorch-lightning/pull/7970)) - Fixed `dataloader_idx` argument value when predicting with only one `DataLoader` ([#7941](https://github.com/PyTorchLightning/pytorch-lightning/pull/7941)) - Fixed passing the `stage` argument of `Callback.{setup,teardown}` as a keyword ([#7973](https://github.com/PyTorchLightning/pytorch-lightning/pull/7973)) - Fixed metrics generated during `validation sanity checking` are cleaned on end ([#8171](https://github.com/PyTorchLightning/pytorch-lightning/pull/8171)) - Fixed `log_gpu_memory` metrics not being added to `logging` when nothing else is logged ([#8174](https://github.com/PyTorchLightning/pytorch-lightning/pull/8174)) - Fixed a bug where calling `log` with a `Metric` instance would raise an error if it was a nested attribute of the model ([#8181](https://github.com/PyTorchLightning/pytorch-lightning/pull/8181)) - Fixed a bug where using `precision=64` would cause buffers with complex dtype to be cast to real ([#8208](https://github.com/PyTorchLightning/pytorch-lightning/pull/8208)) - Fixed `is_overridden` returning true for wrapped functions with no changes ([#8296](https://github.com/PyTorchLightning/pytorch-lightning/pull/8296)) - Fixed a bug where `truncated_bptt_steps` would throw an AttributeError when the target RNN has multiple hidden states ([#8145](https://github.com/PyTorchLightning/pytorch-lightning/pull/8145)) - Fixed `self.optimizers()` not returning a single optimizer if it had been wrapped ([#8326](https://github.com/PyTorchLightning/pytorch-lightning/pull/8326)) - Fixed the `on_after_backward` hook not getting called when using manual optimization and no plugins ([#8328](https://github.com/PyTorchLightning/pytorch-lightning/pull/8328)) - Fixed the `LightningModule.backward` hook only getting called with the `apex` plugin when using manual optimization ([#8328](https://github.com/PyTorchLightning/pytorch-lightning/pull/8328)) - Fixed moving batch to device before sending it to the `on_*_batch_start`/`on_*_batch_end` callbacks and model hooks ([#7378](https://github.com/PyTorchLightning/pytorch-lightning/pull/7378)) - Fixed passing a custom `DDPPlugin` when choosing `accelerator="ddp_cpu"` for the accelerator ([#6208](https://github.com/PyTorchLightning/pytorch-lightning/pull/6208)) - Fixed missing call to `LightningModule.untoggle_optimizer` in training loop when running gradient accumulation with multiple optimizers ([#8284](https://github.com/PyTorchLightning/pytorch-lightning/pull/8284)) - Fixed hash of LightningEnum to work with value instead of name ([#8421](https://github.com/PyTorchLightning/pytorch-lightning/pull/8421)). - Fixed a bug where an extra checkpoint was saved at the end of training if the `val_check_interval` did not align with the number of training batches ([#7724](https://github.com/PyTorchLightning/pytorch-lightning/pull/7724)) - Fixed hash of LightningEnum to work with value instead of name([#8421](https://github.com/PyTorchLightning/pytorch-lightning/pull/8421)). - Fixed `move_data_to_device` to return the batch if the object `to` function didn't return `self` ([#8433](https://github.com/PyTorchLightning/pytorch-lightning/pull/8433)) - Fixed progress bar updates for Pod Training ([#8258](https://github.com/PyTorchLightning/pytorch-lightning/pull/8258)) - Fixed clearing dataloader references before attaching new dataloaders in consecutive `Trainer.{fit,validate,test,predict}´ runs ([#8442](https://github.com/PyTorchLightning/pytorch-lightning/pull/8442)) - Fixed memory leaks on GPU by moving `optimizer_states`, `ResultCollection.extra`, `ResultMetric` attributes, and `LoggerConnector` metrics to `cpu`. Also, delete the DDP wrapper on `teardown` ([#8490](https://github.com/PyTorchLightning/pytorch-lightning/pull/8490)) - Fixed `SWA` callback using LightningModule `prevent_trainer_and_dataloaders_deepcopy` to avoid OOM ([#8472](https://github.com/PyTorchLightning/pytorch-lightning/pull/8472)) - Fixed `ModelPruning` callback `on_save_checkpoint` to avoid making a `deepcopy` potentially leading to OOM ([#8472](https://github.com/PyTorchLightning/pytorch-lightning/pull/8472)) - Fixed the sampler replacement logic for `DataLoader`s which do not define all `DataLoader` attributes as `__init__` parameters ([#8519](https://github.com/PyTorchLightning/pytorch-lightning/pull/8519)) - Fixed DeepSpeed Windows support ([#8488](https://github.com/PyTorchLightning/pytorch-lightning/pull/8488)) - Fixed DeepSpeed not properly setting the trainer `lr_schedulers` attribute ([#8527](https://github.com/PyTorchLightning/pytorch-lightning/pull/8527)) - Fixed experiment version and log-dir divergence in DDP when using multiple `Trainer` instances in sequence ([7403](https://github.com/PyTorchLightning/pytorch-lightning/pull/7403)) - Enabled manual optimization for TPUs ([#8458](https://github.com/PyTorchLightning/pytorch-lightning/pull/8458)) - Fixed `accumulate_grad_batches` not been recomputed during model reload ([#5334](https://github.com/PyTorchLightning/pytorch-lightning/pull/5334)) - Fixed a `TypeError` when wrapping optimizers in the `HorovodPlugin` and running `Trainer.test` ([#7840](https://github.com/PyTorchLightning/pytorch-lightning/pull/7840)) - Fixed `BackboneFinetuning` restoration ([#8501](https://github.com/PyTorchLightning/pytorch-lightning/pull/8501)) - Fixed `lr_scheduler` with metric (e.g. `torch.optim.lr_scheduler.ReduceLROnPlateau`) when using `automatic_optimization = False` ([#7643](https://github.com/PyTorchLightning/pytorch-lightning/pull/7643)) - Fixed `DeepSpeed` breaking with no schedulers ([#8580](https://github.com/PyTorchLightning/pytorch-lightning/pull/8580)) ## [1.3.8] - 2021-07-01 ### Fixed - Fixed a sync deadlock when checkpointing a `LightningModule` that uses a torchmetrics 0.4 `Metric` ([#8218](https://github.com/PyTorchLightning/pytorch-lightning/pull/8218)) - Fixed compatibility TorchMetrics v0.4 ([#8206](https://github.com/PyTorchLightning/pytorch-lightning/pull/8206)) - Added torchelastic check when sanitizing GPUs ([#8095](https://github.com/PyTorchLightning/pytorch-lightning/pull/8095)) - Fixed a DDP info message that was never shown ([#8111](https://github.com/PyTorchLightning/pytorch-lightning/pull/8111)) - Fixed metrics deprecation message at module import level ([#8163](https://github.com/PyTorchLightning/pytorch-lightning/pull/8163)) - Fixed a bug where an infinite recursion would be triggered when using the `BaseFinetuning` callback on a model that contains a `ModuleDict` ([#8170](https://github.com/PyTorchLightning/pytorch-lightning/pull/8170)) - Added a mechanism to detect `deadlock` for `DDP` when only 1 process trigger an `Exception`. The mechanism will `kill the processes` when it happens ([#8167](https://github.com/PyTorchLightning/pytorch-lightning/pull/8167)) - Fixed NCCL error when selecting non-consecutive device ids ([#8165](https://github.com/PyTorchLightning/pytorch-lightning/pull/8165)) - Fixed SWA to also work with `IterableDataset` ([#8172](https://github.com/PyTorchLightning/pytorch-lightning/pull/8172)) ## [1.3.7] - 2021-06-22 ### Fixed - Fixed a bug where skipping an optimizer while using amp causes amp to trigger an assertion error ([#7975](https://github.com/PyTorchLightning/pytorch-lightning/pull/7975)) - Fixed deprecation messages not showing due to incorrect stacklevel ([#8002](https://github.com/PyTorchLightning/pytorch-lightning/pull/8002), [#8005](https://github.com/PyTorchLightning/pytorch-lightning/pull/8005)) - Fixed setting a `DistributedSampler` when using a distributed plugin in a custom accelerator ([#7814](https://github.com/PyTorchLightning/pytorch-lightning/pull/7814)) - Improved `PyTorchProfiler` chrome traces names ([#8009](https://github.com/PyTorchLightning/pytorch-lightning/pull/8009)) - Fixed moving the best score to device in `EarlyStopping` callback for TPU devices ([#7959](https://github.com/PyTorchLightning/pytorch-lightning/pull/7959)) - Fixes access to `callback_metrics` in ddp_spawn ([#7916](https://github.com/PyTorchLightning/pytorch-lightning/pull/7916)) ## [1.3.6] - 2021-06-15 ### Fixed - Fixed logs overwriting issue for remote filesystems ([#7889](https://github.com/PyTorchLightning/pytorch-lightning/pull/7889)) - Fixed `DataModule.prepare_data` could only be called on the global rank 0 process ([#7945](https://github.com/PyTorchLightning/pytorch-lightning/pull/7945)) - Fixed setting `worker_init_fn` to seed dataloaders correctly when using DDP ([#7942](https://github.com/PyTorchLightning/pytorch-lightning/pull/7942)) - Fixed `BaseFinetuning` callback to properly handle parent modules w/ parameters ([#7931](https://github.com/PyTorchLightning/pytorch-lightning/pull/7931)) ## [1.3.5] - 2021-06-08 ### Added - Added warning to Training Step output ([#7779](https://github.com/PyTorchLightning/pytorch-lightning/pull/7779)) ### Fixed - Fixed `LearningRateMonitor` and `BackboneFinetuning` ([#7835](https://github.com/PyTorchLightning/pytorch-lightning/pull/7835)) - Minor improvements to `apply_to_collection` and type signature of `log_dict` ([#7851](https://github.com/PyTorchLightning/pytorch-lightning/pull/7851)) - Fixed docker versions ([#7834](https://github.com/PyTorchLightning/pytorch-lightning/pull/7834)) - Fixed sharded training check for fp16 precision ([#7825](https://github.com/PyTorchLightning/pytorch-lightning/pull/7825)) - Fixed support for torch Module type hints in LightningCLI ([#7807](https://github.com/PyTorchLightning/pytorch-lightning/pull/7807)) ### Changed - Move `training_output` validation to after `train_step_end` ([#7868](https://github.com/PyTorchLightning/pytorch-lightning/pull/7868)) ## [1.3.4] - 2021-06-01 ### Fixed - Fixed info message when max training time reached ([#7780](https://github.com/PyTorchLightning/pytorch-lightning/pull/7780)) - Fixed missing `__len__` method to `IndexBatchSamplerWrapper` ([#7681](https://github.com/PyTorchLightning/pytorch-lightning/pull/7681)) ## [1.3.3] - 2021-05-27 ### Changed - Changed calling of `untoggle_optimizer(opt_idx)` out of the closure function ([#7563](https://github.com/PyTorchLightning/pytorch-lightning/pull/7563)) ### Fixed - Fixed `ProgressBar` pickling after calling `trainer.predict` ([#7608](https://github.com/PyTorchLightning/pytorch-lightning/pull/7608)) - Fixed broadcasting in multi-node, multi-gpu DDP using torch 1.7 ([#7592](https://github.com/PyTorchLightning/pytorch-lightning/pull/7592)) - Fixed dataloaders are not reset when tuning the model ([#7566](https://github.com/PyTorchLightning/pytorch-lightning/pull/7566)) - Fixed print errors in `ProgressBar` when `trainer.fit` is not called ([#7674](https://github.com/PyTorchLightning/pytorch-lightning/pull/7674)) - Fixed global step update when the epoch is skipped ([#7677](https://github.com/PyTorchLightning/pytorch-lightning/pull/7677)) - Fixed training loop total batch counter when accumulate grad batches was enabled ([#7692](https://github.com/PyTorchLightning/pytorch-lightning/pull/7692)) ## [1.3.2] - 2021-05-18 ### Changed - `DataModule`s now avoid duplicate `{setup,teardown,prepare_data}` calls for the same stage ([#7238](https://github.com/PyTorchLightning/pytorch-lightning/pull/7238)) ### Fixed - Fixed parsing of multiple training dataloaders ([#7433](https://github.com/PyTorchLightning/pytorch-lightning/pull/7433)) - Fixed recursive passing of `wrong_type` keyword argument in `pytorch_lightning.utilities.apply_to_collection` ([#7433](https://github.com/PyTorchLightning/pytorch-lightning/pull/7433)) - Fixed setting correct `DistribType` for `ddp_cpu` (spawn) backend ([#7492](https://github.com/PyTorchLightning/pytorch-lightning/pull/7492)) - Fixed incorrect number of calls to LR scheduler when `check_val_every_n_epoch > 1` ([#7032](https://github.com/PyTorchLightning/pytorch-lightning/pull/7032)) ## [1.3.1] - 2021-05-11 ### Fixed - Fixed DeepSpeed with IterableDatasets ([#7362](https://github.com/PyTorchLightning/pytorch-lightning/pull/7362)) - Fixed `Trainer.current_epoch` not getting restored after tuning ([#7434](https://github.com/PyTorchLightning/pytorch-lightning/pull/7434)) - Fixed local rank displayed in console log ([#7395](https://github.com/PyTorchLightning/pytorch-lightning/pull/7395)) ## [1.3.0] - 2021-05-06 ### Added - Added support for the `EarlyStopping` callback to run at the end of the training epoch ([#6944](https://github.com/PyTorchLightning/pytorch-lightning/pull/6944)) - Added synchronization points before and after `setup` hooks are run ([#7202](https://github.com/PyTorchLightning/pytorch-lightning/pull/7202)) - Added a `teardown` hook to `ClusterEnvironment` ([#6942](https://github.com/PyTorchLightning/pytorch-lightning/pull/6942)) - Added utils for metrics to scalar conversions ([#7180](https://github.com/PyTorchLightning/pytorch-lightning/pull/7180)) - Added utils for NaN/Inf detection for gradients and parameters ([#6834](https://github.com/PyTorchLightning/pytorch-lightning/pull/6834)) - Added more explicit exception message when trying to execute `trainer.test()` or `trainer.validate()` with `fast_dev_run=True` ([#6667](https://github.com/PyTorchLightning/pytorch-lightning/pull/6667)) - Added `LightningCLI` class to provide simple reproducibility with minimum boilerplate training CLI ( [#4492](https://github.com/PyTorchLightning/pytorch-lightning/pull/4492), [#6862](https://github.com/PyTorchLightning/pytorch-lightning/pull/6862), [#7156](https://github.com/PyTorchLightning/pytorch-lightning/pull/7156), [#7299](https://github.com/PyTorchLightning/pytorch-lightning/pull/7299)) - Added `gradient_clip_algorithm` argument to Trainer for gradient clipping by value ([#6123](https://github.com/PyTorchLightning/pytorch-lightning/pull/6123)). - Added a way to print to terminal without breaking up the progress bar ([#5470](https://github.com/PyTorchLightning/pytorch-lightning/pull/5470)) - Added support to checkpoint after training steps in `ModelCheckpoint` callback ([#6146](https://github.com/PyTorchLightning/pytorch-lightning/pull/6146)) - Added `TrainerStatus.{INITIALIZING,RUNNING,FINISHED,INTERRUPTED}` ([#7173](https://github.com/PyTorchLightning/pytorch-lightning/pull/7173)) - Added `Trainer.validate()` method to perform one evaluation epoch over the validation set ([#4948](https://github.com/PyTorchLightning/pytorch-lightning/pull/4948)) - Added `LightningEnvironment` for Lightning-specific DDP ([#5915](https://github.com/PyTorchLightning/pytorch-lightning/pull/5915)) - Added `teardown()` hook to LightningDataModule ([#4673](https://github.com/PyTorchLightning/pytorch-lightning/pull/4673)) - Added `auto_insert_metric_name` parameter to `ModelCheckpoint` ([#6277](https://github.com/PyTorchLightning/pytorch-lightning/pull/6277)) - Added arg to `self.log` that enables users to give custom names when dealing with multiple dataloaders ([#6274](https://github.com/PyTorchLightning/pytorch-lightning/pull/6274)) - Added `teardown` method to `BaseProfiler` to enable subclasses defining post-profiling steps outside of `__del__` ([#6370](https://github.com/PyTorchLightning/pytorch-lightning/pull/6370)) - Added `setup` method to `BaseProfiler` to enable subclasses defining pre-profiling steps for every process ([#6633](https://github.com/PyTorchLightning/pytorch-lightning/pull/6633)) - Added no return warning to predict ([#6139](https://github.com/PyTorchLightning/pytorch-lightning/pull/6139)) - Added `Trainer.predict` config validation ([#6543](https://github.com/PyTorchLightning/pytorch-lightning/pull/6543)) - Added `AbstractProfiler` interface ([#6621](https://github.com/PyTorchLightning/pytorch-lightning/pull/6621)) - Added support for including module names for forward in the autograd trace of `PyTorchProfiler` ([#6349](https://github.com/PyTorchLightning/pytorch-lightning/pull/6349)) - Added support for the PyTorch 1.8.1 autograd profiler ([#6618](https://github.com/PyTorchLightning/pytorch-lightning/pull/6618)) - Added `outputs` parameter to callback's `on_validation_epoch_end` & `on_test_epoch_end` hooks ([#6120](https://github.com/PyTorchLightning/pytorch-lightning/pull/6120)) - Added `configure_sharded_model` hook ([#6679](https://github.com/PyTorchLightning/pytorch-lightning/pull/6679)) - Added support for `precision=64`, enabling training with double precision ([#6595](https://github.com/PyTorchLightning/pytorch-lightning/pull/6595)) - Added support for DDP communication hooks ([#6736](https://github.com/PyTorchLightning/pytorch-lightning/pull/6736)) - Added `artifact_location` argument to `MLFlowLogger` which will be passed to the `MlflowClient.create_experiment` call ([#6677](https://github.com/PyTorchLightning/pytorch-lightning/pull/6677)) - Added `model` parameter to precision plugins' `clip_gradients` signature ( [#6764](https://github.com/PyTorchLightning/pytorch-lightning/pull/6764), [#7231](https://github.com/PyTorchLightning/pytorch-lightning/pull/7231)) - Added `is_last_batch` attribute to `Trainer` ([#6825](https://github.com/PyTorchLightning/pytorch-lightning/pull/6825)) - Added `LightningModule.lr_schedulers()` for manual optimization ([#6567](https://github.com/PyTorchLightning/pytorch-lightning/pull/6567)) - Added `MpModelWrapper` in TPU Spawn ([#7045](https://github.com/PyTorchLightning/pytorch-lightning/pull/7045)) - Added `max_time` Trainer argument to limit training time ([#6823](https://github.com/PyTorchLightning/pytorch-lightning/pull/6823)) - Added `on_predict_{batch,epoch}_{start,end}` hooks ([#7141](https://github.com/PyTorchLightning/pytorch-lightning/pull/7141)) - Added new `EarlyStopping` parameters `stopping_threshold` and `divergence_threshold` ([#6868](https://github.com/PyTorchLightning/pytorch-lightning/pull/6868)) - Added `debug` flag to TPU Training Plugins (PT_XLA_DEBUG) ([#7219](https://github.com/PyTorchLightning/pytorch-lightning/pull/7219)) - Added new `UnrepeatedDistributedSampler` and `IndexBatchSamplerWrapper` for tracking distributed predictions ([#7215](https://github.com/PyTorchLightning/pytorch-lightning/pull/7215)) - Added `trainer.predict(return_predictions=None|False|True)` ([#7215](https://github.com/PyTorchLightning/pytorch-lightning/pull/7215)) - Added `BasePredictionWriter` callback to implement prediction saving ([#7127](https://github.com/PyTorchLightning/pytorch-lightning/pull/7127)) - Added `trainer.tune(scale_batch_size_kwargs, lr_find_kwargs)` arguments to configure the tuning algorithms ([#7258](https://github.com/PyTorchLightning/pytorch-lightning/pull/7258)) - Added `tpu_distributed` check for TPU Spawn barrier ([#7241](https://github.com/PyTorchLightning/pytorch-lightning/pull/7241)) - Added device updates to TPU Spawn for Pod training ([#7243](https://github.com/PyTorchLightning/pytorch-lightning/pull/7243)) - Added warning when missing `Callback` and using `resume_from_checkpoint` ([#7254](https://github.com/PyTorchLightning/pytorch-lightning/pull/7254)) - DeepSpeed single file saving ([#6900](https://github.com/PyTorchLightning/pytorch-lightning/pull/6900)) - Added Training type Plugins Registry ( [#6982](https://github.com/PyTorchLightning/pytorch-lightning/pull/6982), [#7063](https://github.com/PyTorchLightning/pytorch-lightning/pull/7063), [#7214](https://github.com/PyTorchLightning/pytorch-lightning/pull/7214), [#7224](https://github.com/PyTorchLightning/pytorch-lightning/pull/7224) ) - Add `ignore` param to `save_hyperparameters` ([#6056](https://github.com/PyTorchLightning/pytorch-lightning/pull/6056)) ### Changed - Changed `LightningModule.truncated_bptt_steps` to be property ([#7323](https://github.com/PyTorchLightning/pytorch-lightning/pull/7323)) - Changed `EarlyStopping` callback from by default running `EarlyStopping.on_validation_end` if only training is run. Set `check_on_train_epoch_end` to run the callback at the end of the train epoch instead of at the end of the validation epoch ([#7069](https://github.com/PyTorchLightning/pytorch-lightning/pull/7069)) - Renamed `pytorch_lightning.callbacks.swa` to `pytorch_lightning.callbacks.stochastic_weight_avg` ([#6259](https://github.com/PyTorchLightning/pytorch-lightning/pull/6259)) - Refactor `RunningStage` and `TrainerState` usage ( [#4945](https://github.com/PyTorchLightning/pytorch-lightning/pull/4945), [#7173](https://github.com/PyTorchLightning/pytorch-lightning/pull/7173)) * Added `RunningStage.SANITY_CHECKING` * Added `TrainerFn.{FITTING,VALIDATING,TESTING,PREDICTING,TUNING}` * Changed `trainer.evaluating` to return `True` if validating or testing - Changed `setup()` and `teardown()` stage argument to take any of `{fit,validate,test,predict}` ([#6386](https://github.com/PyTorchLightning/pytorch-lightning/pull/6386)) - Changed profilers to save separate report files per state and rank ([#6621](https://github.com/PyTorchLightning/pytorch-lightning/pull/6621)) - The trainer no longer tries to save a checkpoint on exception or run callback's `on_train_end` functions ([#6864](https://github.com/PyTorchLightning/pytorch-lightning/pull/6864)) - Changed `PyTorchProfiler` to use `torch.autograd.profiler.record_function` to record functions ([#6349](https://github.com/PyTorchLightning/pytorch-lightning/pull/6349)) - Disabled `lr_scheduler.step()` in manual optimization ([#6825](https://github.com/PyTorchLightning/pytorch-lightning/pull/6825)) - Changed warnings and recommendations for dataloaders in `ddp_spawn` ([#6762](https://github.com/PyTorchLightning/pytorch-lightning/pull/6762)) - `pl.seed_everything` will now also set the seed on the `DistributedSampler` ([#7024](https://github.com/PyTorchLightning/pytorch-lightning/pull/7024)) - Changed default setting for communication of multi-node training using `DDPShardedPlugin` ([#6937](https://github.com/PyTorchLightning/pytorch-lightning/pull/6937)) - `trainer.tune()` now returns the tuning result ([#7258](https://github.com/PyTorchLightning/pytorch-lightning/pull/7258)) - `LightningModule.from_datasets()` now accepts `IterableDataset` instances as training datasets. ([#7503](https://github.com/PyTorchLightning/pytorch-lightning/pull/7503)) - Changed `resume_from_checkpoint` warning to an error when the checkpoint file does not exist ([#7075](https://github.com/PyTorchLightning/pytorch-lightning/pull/7075)) - Automatically set `sync_batchnorm` for `training_type_plugin` ([#6536](https://github.com/PyTorchLightning/pytorch-lightning/pull/6536)) - Allowed training type plugin to delay optimizer creation ([#6331](https://github.com/PyTorchLightning/pytorch-lightning/pull/6331)) - Removed ModelSummary validation from train loop on_trainer_init ([#6610](https://github.com/PyTorchLightning/pytorch-lightning/pull/6610)) - Moved `save_function` to accelerator ([#6689](https://github.com/PyTorchLightning/pytorch-lightning/pull/6689)) - Updated DeepSpeed ZeRO ([#6546](https://github.com/PyTorchLightning/pytorch-lightning/pull/6546), [#6752](https://github.com/PyTorchLightning/pytorch-lightning/pull/6752), [#6142](https://github.com/PyTorchLightning/pytorch-lightning/pull/6142), [#6321](https://github.com/PyTorchLightning/pytorch-lightning/pull/6321)) - Improved verbose logging for `EarlyStopping` callback ([#6811](https://github.com/PyTorchLightning/pytorch-lightning/pull/6811)) - Run ddp_spawn dataloader checks on Windows ([#6930](https://github.com/PyTorchLightning/pytorch-lightning/pull/6930)) - Updated mlflow with using `resolve_tags` ([#6746](https://github.com/PyTorchLightning/pytorch-lightning/pull/6746)) - Moved `save_hyperparameters` to its own function ([#7119](https://github.com/PyTorchLightning/pytorch-lightning/pull/7119)) - Replaced `_DataModuleWrapper` with `__new__` ([#7289](https://github.com/PyTorchLightning/pytorch-lightning/pull/7289)) - Reset `current_fx` properties on lightning module in teardown ([#7247](https://github.com/PyTorchLightning/pytorch-lightning/pull/7247)) - Auto-set `DataLoader.worker_init_fn` with `seed_everything` ([#6960](https://github.com/PyTorchLightning/pytorch-lightning/pull/6960)) - Remove `model.trainer` call inside of dataloading mixin ([#7317](https://github.com/PyTorchLightning/pytorch-lightning/pull/7317)) - Split profilers module ([#6261](https://github.com/PyTorchLightning/pytorch-lightning/pull/6261)) - Ensure accelerator is valid if running interactively ([#5970](https://github.com/PyTorchLightning/pytorch-lightning/pull/5970)) - Disabled batch transfer in DP mode ([#6098](https://github.com/PyTorchLightning/pytorch-lightning/pull/6098)) ### Deprecated - Deprecated `outputs` in both `LightningModule.on_train_epoch_end` and `Callback.on_train_epoch_end` hooks ([#7339](https://github.com/PyTorchLightning/pytorch-lightning/pull/7339)) - Deprecated `Trainer.truncated_bptt_steps` in favor of `LightningModule.truncated_bptt_steps` ([#7323](https://github.com/PyTorchLightning/pytorch-lightning/pull/7323)) - Deprecated `outputs` in both `LightningModule.on_train_epoch_end` and `Callback.on_train_epoch_end` hooks ([#7339](https://github.com/PyTorchLightning/pytorch-lightning/pull/7339)) - Deprecated `LightningModule.grad_norm` in favor of `pytorch_lightning.utilities.grads.grad_norm` ([#7292](https://github.com/PyTorchLightning/pytorch-lightning/pull/7292)) - Deprecated the `save_function` property from the `ModelCheckpoint` callback ([#7201](https://github.com/PyTorchLightning/pytorch-lightning/pull/7201)) - Deprecated `LightningModule.write_predictions` and `LightningModule.write_predictions_dict` ([#7066](https://github.com/PyTorchLightning/pytorch-lightning/pull/7066)) - Deprecated `TrainerLoggingMixin` in favor of a separate utilities module for metric handling ([#7180](https://github.com/PyTorchLightning/pytorch-lightning/pull/7180)) - Deprecated `TrainerTrainingTricksMixin` in favor of a separate utilities module for NaN/Inf detection for gradients and parameters ([#6834](https://github.com/PyTorchLightning/pytorch-lightning/pull/6834)) - `period` has been deprecated in favor of `every_n_val_epochs` in the `ModelCheckpoint` callback ([#6146](https://github.com/PyTorchLightning/pytorch-lightning/pull/6146)) - Deprecated `trainer.running_sanity_check` in favor of `trainer.sanity_checking` ([#4945](https://github.com/PyTorchLightning/pytorch-lightning/pull/4945)) - Deprecated `Profiler(output_filename)` in favor of `dirpath` and `filename` ([#6621](https://github.com/PyTorchLightning/pytorch-lightning/pull/6621)) - Deprecated `PytorchProfiler(profiled_functions)` in favor of `record_functions` ([#6349](https://github.com/PyTorchLightning/pytorch-lightning/pull/6349)) - Deprecated `@auto_move_data` in favor of `trainer.predict` ([#6993](https://github.com/PyTorchLightning/pytorch-lightning/pull/6993)) - Deprecated `Callback.on_load_checkpoint(checkpoint)` in favor of `Callback.on_load_checkpoint(trainer, pl_module, checkpoint)` ([#7253](https://github.com/PyTorchLightning/pytorch-lightning/pull/7253)) - Deprecated metrics in favor of `torchmetrics` ( [#6505](https://github.com/PyTorchLightning/pytorch-lightning/pull/6505), [#6530](https://github.com/PyTorchLightning/pytorch-lightning/pull/6530), [#6540](https://github.com/PyTorchLightning/pytorch-lightning/pull/6540), [#6547](https://github.com/PyTorchLightning/pytorch-lightning/pull/6547), [#6515](https://github.com/PyTorchLightning/pytorch-lightning/pull/6515), [#6572](https://github.com/PyTorchLightning/pytorch-lightning/pull/6572), [#6573](https://github.com/PyTorchLightning/pytorch-lightning/pull/6573), [#6584](https://github.com/PyTorchLightning/pytorch-lightning/pull/6584), [#6636](https://github.com/PyTorchLightning/pytorch-lightning/pull/6636), [#6637](https://github.com/PyTorchLightning/pytorch-lightning/pull/6637), [#6649](https://github.com/PyTorchLightning/pytorch-lightning/pull/6649), [#6659](https://github.com/PyTorchLightning/pytorch-lightning/pull/6659), [#7131](https://github.com/PyTorchLightning/pytorch-lightning/pull/7131), ) - Deprecated the `LightningModule.datamodule` getter and setter methods; access them through `Trainer.datamodule` instead ([#7168](https://github.com/PyTorchLightning/pytorch-lightning/pull/7168)) - Deprecated the use of `Trainer(gpus="i")` (string) for selecting the i-th GPU; from v1.5 this will set the number of GPUs instead of the index ([#6388](https://github.com/PyTorchLightning/pytorch-lightning/pull/6388)) ### Removed - Removed the `exp_save_path` property from the `LightningModule` ([#7266](https://github.com/PyTorchLightning/pytorch-lightning/pull/7266)) - Removed training loop explicitly calling `EarlyStopping.on_validation_end` if no validation is run ([#7069](https://github.com/PyTorchLightning/pytorch-lightning/pull/7069)) - Removed `automatic_optimization` as a property from the training loop in favor of `LightningModule.automatic_optimization` ([#7130](https://github.com/PyTorchLightning/pytorch-lightning/pull/7130)) - Removed evaluation loop legacy returns for `*_epoch_end` hooks ([#6973](https://github.com/PyTorchLightning/pytorch-lightning/pull/6973)) - Removed support for passing a bool value to `profiler` argument of Trainer ([#6164](https://github.com/PyTorchLightning/pytorch-lightning/pull/6164)) - Removed no return warning from val/test step ([#6139](https://github.com/PyTorchLightning/pytorch-lightning/pull/6139)) - Removed passing a `ModelCheckpoint` instance to `Trainer(checkpoint_callback)` ([#6166](https://github.com/PyTorchLightning/pytorch-lightning/pull/6166)) - Removed deprecated Trainer argument `enable_pl_optimizer` and `automatic_optimization` ([#6163](https://github.com/PyTorchLightning/pytorch-lightning/pull/6163)) - Removed deprecated metrics ([#6161](https://github.com/PyTorchLightning/pytorch-lightning/pull/6161)) * from `pytorch_lightning.metrics.functional.classification` removed `to_onehot`, `to_categorical`, `get_num_classes`, `roc`, `multiclass_roc`, `average_precision`, `precision_recall_curve`, `multiclass_precision_recall_curve` * from `pytorch_lightning.metrics.functional.reduction` removed `reduce`, `class_reduce` - Removed deprecated `ModelCheckpoint` arguments `prefix`, `mode="auto"` ([#6162](https://github.com/PyTorchLightning/pytorch-lightning/pull/6162)) - Removed `mode='auto'` from `EarlyStopping` ([#6167](https://github.com/PyTorchLightning/pytorch-lightning/pull/6167)) - Removed `epoch` and `step` arguments from `ModelCheckpoint.format_checkpoint_name()`, these are now included in the `metrics` argument ([#7344](https://github.com/PyTorchLightning/pytorch-lightning/pull/7344)) - Removed legacy references for magic keys in the `Result` object ([#6016](https://github.com/PyTorchLightning/pytorch-lightning/pull/6016)) - Removed deprecated `LightningModule` `hparams` setter ([#6207](https://github.com/PyTorchLightning/pytorch-lightning/pull/6207)) - Removed legacy code to log or include metrics in the progress bar by returning them in a dict with the `"log"/"progress_bar"` magic keys. Use `self.log` instead ([#6734](https://github.com/PyTorchLightning/pytorch-lightning/pull/6734)) - Removed `trainer.fit()` return value of `1`. It has no return now ([#7237](https://github.com/PyTorchLightning/pytorch-lightning/pull/7237)) - Removed `logger_connector` legacy code ([#6733](https://github.com/PyTorchLightning/pytorch-lightning/pull/6733)) - Removed unused mixin attributes ([#6487](https://github.com/PyTorchLightning/pytorch-lightning/pull/6487)) ### Fixed - Fixed NaN errors in progress bars when training with iterable datasets with no length defined ([#7306](https://github.com/PyTorchLightning/pytorch-lightning/pull/7306)) - Fixed attaching train and validation dataloaders when `reload_dataloaders_every_epoch=True` and `num_sanity_val_steps=0` ([#7207](https://github.com/PyTorchLightning/pytorch-lightning/pull/7207)) - Added a barrier in the accelerator `teardown` to synchronize processes before execution finishes ([#6814](https://github.com/PyTorchLightning/pytorch-lightning/pull/6814)) - Fixed multi-node DDP sub-process launch by using `local_rank` instead of `global_rank` for main process assertion ([#7061](https://github.com/PyTorchLightning/pytorch-lightning/pull/7061)) - Fixed incorrect removal of `WORLD_SIZE` environment variable in DDP training when launching with torch distributed/torchelastic ([#6942](https://github.com/PyTorchLightning/pytorch-lightning/pull/6942)) - Made the `Plugin.reduce` method more consistent across all Plugins to reflect a mean-reduction by default ([#6011](https://github.com/PyTorchLightning/pytorch-lightning/pull/6011)) - Move lightning module to correct device type when using LightningDistributedWrapper ([#6070](https://github.com/PyTorchLightning/pytorch-lightning/pull/6070)) - Do not print top-k verbose log with `ModelCheckpoint(monitor=None)` ([#6109](https://github.com/PyTorchLightning/pytorch-lightning/pull/6109)) - Fixed `ModelCheckpoint(save_top_k=0, save_last=True)` not saving the `last` checkpoint ([#6136](https://github.com/PyTorchLightning/pytorch-lightning/pull/6136)) - Fixed `.teardown(stage='fit')` and `.on_fit_{start,end}()` getting called during `trainer.test` ([#6386](https://github.com/PyTorchLightning/pytorch-lightning/pull/6386)) - Fixed LightningModule `all_gather` on cpu tensors ([#6416](https://github.com/PyTorchLightning/pytorch-lightning/pull/6416)) - Fixed torch distributed not available in setup hook for DDP ([#6506](https://github.com/PyTorchLightning/pytorch-lightning/pull/6506)) - Fixed `trainer.tuner.{lr_find,scale_batch_size}` not setting the `Trainer` state properly ([#7258](https://github.com/PyTorchLightning/pytorch-lightning/pull/7258)) - Fixed bug where the learning rate schedulers did not follow the optimizer frequencies ([#4868](https://github.com/PyTorchLightning/pytorch-lightning/pull/4868)) - Fixed pickle error checker to now check for `pickle.PickleError` to catch all pickle errors ([#6917](https://github.com/PyTorchLightning/pytorch-lightning/pull/6917)) - Fixed a bug where the outputs object passed to `LightningModule.training_epoch_end` was different from the object passed to the `on_train_end_epoch` hook ([#6969](https://github.com/PyTorchLightning/pytorch-lightning/pull/6969)) - Fixed a bug where the outputs passed to `train_batch_end` would be lists even when using a single optimizer and no truncated backprop through time steps ([#6969](https://github.com/PyTorchLightning/pytorch-lightning/pull/6969)) - Fixed bug for trainer error handling which would cause hang for distributed training ([#6864](https://github.com/PyTorchLightning/pytorch-lightning/pull/6864)) - Fixed `self.device` not returning the correct device in replicas of data-parallel ([#6414](https://github.com/PyTorchLightning/pytorch-lightning/pull/6414)) - Fixed `lr_find` trying beyond `num_training` steps and suggesting a too high learning rate ([#7076](https://github.com/PyTorchLightning/pytorch-lightning/pull/7076)) - Fixed logger creating incorrect version folder in DDP with repeated `Trainer.fit` calls ([#7077](https://github.com/PyTorchLightning/pytorch-lightning/pull/7077)) - Fixed metric objects passed directly to `self.log` not being reset correctly ([#7055](https://github.com/PyTorchLightning/pytorch-lightning/pull/7055)) - Fixed `CombinedLoader` in distributed settings for validation / testing ([#7102](https://github.com/PyTorchLightning/pytorch-lightning/pull/7102)) - Fixed the save_dir in `WandbLogger` when the run was initiated externally ([#7106](https://github.com/PyTorchLightning/pytorch-lightning/pull/7106)) - Fixed `num_sanity_val_steps` affecting reproducibility of training data shuffling ([#7014](https://github.com/PyTorchLightning/pytorch-lightning/pull/7014)) - Fixed resetting device after `fitting/evaluating/predicting` ([#7188](https://github.com/PyTorchLightning/pytorch-lightning/pull/7188)) - Fixed bug where `trainer.tuner.scale_batch_size(max_trials=0)` would not return the correct batch size result ([#7262](https://github.com/PyTorchLightning/pytorch-lightning/pull/7262)) - Fixed metrics not being properly logged with `precision=16` and `manual_optimization` ([#7228](https://github.com/PyTorchLightning/pytorch-lightning/pull/7228)) - Fixed `BaseFinetuning` properly reloading `optimizer_states` when using `resume_from_checkpoint` ([#6891](https://github.com/PyTorchLightning/pytorch-lightning/pull/6891)) - Fixed `parameters_to_ignore` not properly set to DDPWrapper ([#7239](https://github.com/PyTorchLightning/pytorch-lightning/pull/7239)) - Fixed parsing of `fast_dev_run=True` with the built-in `ArgumentParser` ([#7240](https://github.com/PyTorchLightning/pytorch-lightning/pull/7240)) - Fixed handling an `IterableDataset` that fails to produce a batch at the beginning of an epoch ([#7294](https://github.com/PyTorchLightning/pytorch-lightning/pull/7294)) - Fixed `LightningModule.save_hyperparameters()` when attempting to save an empty container ([#7268](https://github.com/PyTorchLightning/pytorch-lightning/pull/7268)) - Fixed `apex` not properly instantiated when running with `ddp` ([#7274](https://github.com/PyTorchLightning/pytorch-lightning/pull/7274)) - Fixed optimizer `state` not moved to `GPU` ([#7277](https://github.com/PyTorchLightning/pytorch-lightning/pull/7277)) - Fixed custom init args for `WandbLogger` ([#6989](https://github.com/PyTorchLightning/pytorch-lightning/pull/6989)) - Fixed a bug where an error would be raised if the train dataloader sometimes produced None for a batch ([#7342](https://github.com/PyTorchLightning/pytorch-lightning/pull/7342)) - Fixed examples ( [#6600](https://github.com/PyTorchLightning/pytorch-lightning/pull/6600), [#6638](https://github.com/PyTorchLightning/pytorch-lightning/pull/6638), [#7096](https://github.com/PyTorchLightning/pytorch-lightning/pull/7096), [#7246](https://github.com/PyTorchLightning/pytorch-lightning/pull/7246), [#6357](https://github.com/PyTorchLightning/pytorch-lightning/pull/6357), [#6476](https://github.com/PyTorchLightning/pytorch-lightning/pull/6476), [#6294](https://github.com/PyTorchLightning/pytorch-lightning/pull/6294), [#6373](https://github.com/PyTorchLightning/pytorch-lightning/pull/6373), [#6088](https://github.com/PyTorchLightning/pytorch-lightning/pull/6088), [#7398](https://github.com/PyTorchLightning/pytorch-lightning/pull/7398) ) - Resolved schedule step bug for PyTorch Profiler ([#6674](https://github.com/PyTorchLightning/pytorch-lightning/pull/6674), [#6681](https://github.com/PyTorchLightning/pytorch-lightning/pull/6681)) - Updated logic for checking TPUs availability ([#6767](https://github.com/PyTorchLightning/pytorch-lightning/pull/6767)) - Resolve TPU miss rendezvous ([#6781](https://github.com/PyTorchLightning/pytorch-lightning/pull/6781)) - Fixed auto-scaling mode when calling tune method on trainer ([#7321](https://github.com/PyTorchLightning/pytorch-lightning/pull/7321)) - Fixed finetuning complex models correctly unfreezes ([#6880](https://github.com/PyTorchLightning/pytorch-lightning/pull/6880)) - Ensure we set the eval/train flag correctly on accelerator model ([#6877](https://github.com/PyTorchLightning/pytorch-lightning/pull/6877)) - Set better defaults for `rank_zero_only.rank` when training is launched with SLURM and torchelastic ([#6802](https://github.com/PyTorchLightning/pytorch-lightning/pull/6802)) - Fixed matching the number of outputs of backward with forward for AllGatherGrad ([#6625](https://github.com/PyTorchLightning/pytorch-lightning/pull/6625)) - Fixed the `gradient_clip_algorithm` has no effect ([#6928](https://github.com/PyTorchLightning/pytorch-lightning/pull/6928)) - Fixed CUDA OOM detection and handling ([#6934](https://github.com/PyTorchLightning/pytorch-lightning/pull/6934)) - Fixed `unfreeze_and_add_param_group` expects `modules` rather than `module` ([#6822](https://github.com/PyTorchLightning/pytorch-lightning/pull/6822)) - Fixed DPP + SyncBN when move on device ([#6838](https://github.com/PyTorchLightning/pytorch-lightning/pull/6838)) - Fixed missing arguments in `lr_find` call ([#6784](https://github.com/PyTorchLightning/pytorch-lightning/pull/6784)) - Fixed `set_default_tensor_type` to `torch.DoubleTensor` with precision=64 ([#7108](https://github.com/PyTorchLightning/pytorch-lightning/pull/7108)) - Fixed `NeptuneLogger.log_text(step=None)` ([#7194](https://github.com/PyTorchLightning/pytorch-lightning/pull/7194)) - Fixed importing torchtext batch ([#6365](https://github.com/PyTorchLightning/pytorch-lightning/pull/6365), [#6323](https://github.com/PyTorchLightning/pytorch-lightning/pull/6323), [#6211](https://github.com/PyTorchLightning/pytorch-lightning/pull/6211)) ## [1.2.9] - 2021-04-20 ### Fixed - Fixed the order to call for world ranks & the `root_device` property in `TPUSpawnPlugin` ([#7074](https://github.com/PyTorchLightning/pytorch-lightning/pull/7074)) - Fixed multi-gpu join for Horovod ([#6954](https://github.com/PyTorchLightning/pytorch-lightning/pull/6954)) - Fixed parsing for pre-release package versions ([#6999](https://github.com/PyTorchLightning/pytorch-lightning/pull/6999)) ## [1.2.8] - 2021-04-14 ### Added - Added TPUSpawn + IterableDataset error message ([#6875](https://github.com/PyTorchLightning/pytorch-lightning/pull/6875)) ### Fixed - Fixed process rank not being available right away after `Trainer` instantiation ([#6941](https://github.com/PyTorchLightning/pytorch-lightning/pull/6941)) - Fixed `sync_dist` for tpus ([#6950](https://github.com/PyTorchLightning/pytorch-lightning/pull/6950)) - Fixed `AttributeError` for `require_backward_grad_sync` when running manual optimization with sharded plugin ([#6915](https://github.com/PyTorchLightning/pytorch-lightning/pull/6915)) - Fixed `--gpus` default for parser returned by `Trainer.add_argparse_args` ([#6898](https://github.com/PyTorchLightning/pytorch-lightning/pull/6898)) - Fixed TPU Spawn all gather ([#6896](https://github.com/PyTorchLightning/pytorch-lightning/pull/6896)) - Fixed `EarlyStopping` logic when `min_epochs` or `min_steps` requirement is not met ([#6705](https://github.com/PyTorchLightning/pytorch-lightning/pull/6705)) - Fixed csv extension check ([#6436](https://github.com/PyTorchLightning/pytorch-lightning/pull/6436)) - Fixed checkpoint issue when using Horovod distributed backend ([#6958](https://github.com/PyTorchLightning/pytorch-lightning/pull/6958)) - Fixed tensorboard exception raising ([#6901](https://github.com/PyTorchLightning/pytorch-lightning/pull/6901)) - Fixed setting the eval/train flag correctly on accelerator model ([#6983](https://github.com/PyTorchLightning/pytorch-lightning/pull/6983)) - Fixed DDP_SPAWN compatibility with bug_report_model.py ([#6892](https://github.com/PyTorchLightning/pytorch-lightning/pull/6892)) - Fixed bug where `BaseFinetuning.flatten_modules()` was duplicating leaf node parameters ([#6879](https://github.com/PyTorchLightning/pytorch-lightning/pull/6879)) - Set better defaults for `rank_zero_only.rank` when training is launched with SLURM and torchelastic: * Support SLURM and torchelastic global rank environment variables ([#5715](https://github.com/PyTorchLightning/pytorch-lightning/pull/5715)) * Remove hardcoding of local rank in accelerator connector ([#6878](https://github.com/PyTorchLightning/pytorch-lightning/pull/6878)) ## [1.2.7] - 2021-04-06 ### Fixed - Fixed resolve a bug with omegaconf and xm.save ([#6741](https://github.com/PyTorchLightning/pytorch-lightning/pull/6741)) - Fixed an issue with IterableDataset when __len__ is not defined ([#6828](https://github.com/PyTorchLightning/pytorch-lightning/pull/6828)) - Sanitize None params during pruning ([#6836](https://github.com/PyTorchLightning/pytorch-lightning/pull/6836)) - Enforce an epoch scheduler interval when using SWA ([#6588](https://github.com/PyTorchLightning/pytorch-lightning/pull/6588)) - Fixed TPU Colab hang issue, post training ([#6816](https://github.com/PyTorchLightning/pytorch-lightning/pull/6816)) - Fixed a bug where `TensorBoardLogger` would give a warning and not log correctly to a symbolic link `save_dir` ([#6730](https://github.com/PyTorchLightning/pytorch-lightning/pull/6730)) - Fixed bug where `predict` could not be used when `progress_bar_refresh_rate=0` ([#6884](https://github.com/PyTorchLightning/pytorch-lightning/pull/6884)) ## [1.2.6] - 2021-03-30 ### Changed - Changed the behavior of `on_epoch_start` to run at the beginning of validation & test epoch ([#6498](https://github.com/PyTorchLightning/pytorch-lightning/pull/6498)) ### Removed - Removed legacy code to include `step` dictionary returns in `callback_metrics`. Use `self.log_dict` instead. ([#6682](https://github.com/PyTorchLightning/pytorch-lightning/pull/6682)) ### Fixed - Fixed `DummyLogger.log_hyperparams` raising a `TypeError` when running with `fast_dev_run=True` ([#6398](https://github.com/PyTorchLightning/pytorch-lightning/pull/6398)) - Fixed error on TPUs when there was no `ModelCheckpoint` ([#6654](https://github.com/PyTorchLightning/pytorch-lightning/pull/6654)) - Fixed `trainer.test` freeze on TPUs ([#6654](https://github.com/PyTorchLightning/pytorch-lightning/pull/6654)) - Fixed a bug where gradients were disabled after calling `Trainer.predict` ([#6657](https://github.com/PyTorchLightning/pytorch-lightning/pull/6657)) - Fixed bug where no TPUs were detected in a TPU pod env ([#6719](https://github.com/PyTorchLightning/pytorch-lightning/pull/6719)) ## [1.2.5] - 2021-03-23 ### Changed - Update Gradient Clipping for the TPU Accelerator ([#6576](https://github.com/PyTorchLightning/pytorch-lightning/pull/6576)) - Refactored setup for typing friendly ([#6590](https://github.com/PyTorchLightning/pytorch-lightning/pull/6590)) ### Fixed - Fixed a bug where `all_gather` would not work correctly with `tpu_cores=8` ([#6587](https://github.com/PyTorchLightning/pytorch-lightning/pull/6587)) - Fixed comparing required versions ([#6434](https://github.com/PyTorchLightning/pytorch-lightning/pull/6434)) - Fixed duplicate logs appearing in console when using the python logging module ([#6275](https://github.com/PyTorchLightning/pytorch-lightning/pull/6275)) - Added Autocast in validation, test and predict modes for Native AMP ([#6565](https://github.com/PyTorchLightning/pytorch-lightning/pull/6565)) ## [1.2.4] - 2021-03-16 ### Changed - Changed the default of `find_unused_parameters` back to `True` in DDP and DDP Spawn ([#6438](https://github.com/PyTorchLightning/pytorch-lightning/pull/6438)) ### Fixed - Expose DeepSpeed loss parameters to allow users to fix loss instability ([#6115](https://github.com/PyTorchLightning/pytorch-lightning/pull/6115)) - Fixed DP reduction with collection ([#6324](https://github.com/PyTorchLightning/pytorch-lightning/pull/6324)) - Fixed an issue where the tuner would not tune the learning rate if also tuning the batch size ([#4688](https://github.com/PyTorchLightning/pytorch-lightning/pull/4688)) - Fixed broadcast to use PyTorch `broadcast_object_list` and add `reduce_decision` ([#6410](https://github.com/PyTorchLightning/pytorch-lightning/pull/6410)) - Fixed logger creating directory structure too early in DDP ([#6380](https://github.com/PyTorchLightning/pytorch-lightning/pull/6380)) - Fixed DeepSpeed additional memory use on rank 0 when default device not set early enough ([#6460](https://github.com/PyTorchLightning/pytorch-lightning/pull/6460)) - Fixed an issue with `Tuner.scale_batch_size` not finding the batch size attribute in the datamodule ([#5968](https://github.com/PyTorchLightning/pytorch-lightning/pull/5968)) - Fixed an exception in the layer summary when the model contains torch.jit scripted submodules ([#6511](https://github.com/PyTorchLightning/pytorch-lightning/pull/6511)) - Fixed when Train loop config was run during `Trainer.predict` ([#6541](https://github.com/PyTorchLightning/pytorch-lightning/pull/6541)) ## [1.2.3] - 2021-03-09 ### Fixed - Fixed `ModelPruning(make_pruning_permanent=True)` pruning buffers getting removed when saved during training ([#6073](https://github.com/PyTorchLightning/pytorch-lightning/pull/6073)) - Fixed when `_stable_1d_sort` to work when `n >= N` ([#6177](https://github.com/PyTorchLightning/pytorch-lightning/pull/6177)) - Fixed `AttributeError` when `logger=None` on TPU ([#6221](https://github.com/PyTorchLightning/pytorch-lightning/pull/6221)) - Fixed PyTorch Profiler with `emit_nvtx` ([#6260](https://github.com/PyTorchLightning/pytorch-lightning/pull/6260)) - Fixed `trainer.test` from `best_path` hangs after calling `trainer.fit` ([#6272](https://github.com/PyTorchLightning/pytorch-lightning/pull/6272)) - Fixed `SingleTPU` calling `all_gather` ([#6296](https://github.com/PyTorchLightning/pytorch-lightning/pull/6296)) - Ensure we check DeepSpeed/Sharded in multi-node DDP ([#6297](https://github.com/PyTorchLightning/pytorch-lightning/pull/6297) - Check `LightningOptimizer` doesn't delete optimizer hooks ([#6305](https://github.com/PyTorchLightning/pytorch-lightning/pull/6305) - Resolve memory leak for evaluation ([#6326](https://github.com/PyTorchLightning/pytorch-lightning/pull/6326) - Ensure that clip gradients is only called if the value is greater than 0 ([#6330](https://github.com/PyTorchLightning/pytorch-lightning/pull/6330) - Fixed `Trainer` not resetting `lightning_optimizers` when calling `Trainer.fit()` multiple times ([#6372](https://github.com/PyTorchLightning/pytorch-lightning/pull/6372)) ## [1.2.2] - 2021-03-02 ### Added - Added `checkpoint` parameter to callback's `on_save_checkpoint` hook ([#6072](https://github.com/PyTorchLightning/pytorch-lightning/pull/6072)) ### Changed - Changed the order of `backward`, `step`, `zero_grad` to `zero_grad`, `backward`, `step` ([#6147](https://github.com/PyTorchLightning/pytorch-lightning/pull/6147)) - Changed default for DeepSpeed CPU Offload to False, due to prohibitively slow speeds at smaller scale ([#6262](https://github.com/PyTorchLightning/pytorch-lightning/pull/6262)) ### Fixed - Fixed epoch level schedulers not being called when `val_check_interval < 1.0` ([#6075](https://github.com/PyTorchLightning/pytorch-lightning/pull/6075)) - Fixed multiple early stopping callbacks ([#6197](https://github.com/PyTorchLightning/pytorch-lightning/pull/6197)) - Fixed incorrect usage of `detach()`, `cpu()`, `to()` ([#6216](https://github.com/PyTorchLightning/pytorch-lightning/pull/6216)) - Fixed LBFGS optimizer support which didn't converge in automatic optimization ([#6147](https://github.com/PyTorchLightning/pytorch-lightning/pull/6147)) - Prevent `WandbLogger` from dropping values ([#5931](https://github.com/PyTorchLightning/pytorch-lightning/pull/5931)) - Fixed error thrown when using valid distributed mode in multi node ([#6297](https://github.com/PyTorchLightning/pytorch-lightning/pull/6297) ## [1.2.1] - 2021-02-23 ### Fixed - Fixed incorrect yield logic for the amp autocast context manager ([#6080](https://github.com/PyTorchLightning/pytorch-lightning/pull/6080)) - Fixed priority of plugin/accelerator when setting distributed mode ([#6089](https://github.com/PyTorchLightning/pytorch-lightning/pull/6089)) - Fixed error message for AMP + CPU incompatibility ([#6107](https://github.com/PyTorchLightning/pytorch-lightning/pull/6107)) - Disabled batch transfer in DP mode ([#6093](https://github.com/PyTorchLightning/pytorch-lightning/pull/6093)) ## [1.2.0] - 2021-02-18 ### Added - Added `DataType`, `AverageMethod` and `MDMCAverageMethod` enum in metrics ([#5657](https://github.com/PyTorchLightning/pytorch-lightning/pull/5689)) - Added support for summarized model total params size in megabytes ([#5590](https://github.com/PyTorchLightning/pytorch-lightning/pull/5590)) - Added support for multiple train loaders ([#1959](https://github.com/PyTorchLightning/pytorch-lightning/pull/1959)) - Added `Accuracy` metric now generalizes to Top-k accuracy for (multi-dimensional) multi-class inputs using the `top_k` parameter ([#4838](https://github.com/PyTorchLightning/pytorch-lightning/pull/4838)) - Added `Accuracy` metric now enables the computation of subset accuracy for multi-label or multi-dimensional multi-class inputs with the `subset_accuracy` parameter ([#4838](https://github.com/PyTorchLightning/pytorch-lightning/pull/4838)) - Added `HammingDistance` metric to compute the hamming distance (loss) ([#4838](https://github.com/PyTorchLightning/pytorch-lightning/pull/4838)) - Added `max_fpr` parameter to `auroc` metric for computing partial auroc metric ([#3790](https://github.com/PyTorchLightning/pytorch-lightning/pull/3790)) - Added `StatScores` metric to compute the number of true positives, false positives, true negatives and false negatives ([#4839](https://github.com/PyTorchLightning/pytorch-lightning/pull/4839)) - Added `R2Score` metric ([#5241](https://github.com/PyTorchLightning/pytorch-lightning/pull/5241)) - Added `LambdaCallback` ([#5347](https://github.com/PyTorchLightning/pytorch-lightning/pull/5347)) - Added `BackboneLambdaFinetuningCallback` ([#5377](https://github.com/PyTorchLightning/pytorch-lightning/pull/5377)) - Accelerator `all_gather` supports collection ([#5221](https://github.com/PyTorchLightning/pytorch-lightning/pull/5221)) - Added `image_gradients` functional metric to compute the image gradients of a given input image. ([#5056](https://github.com/PyTorchLightning/pytorch-lightning/pull/5056)) - Added `MetricCollection` ([#4318](https://github.com/PyTorchLightning/pytorch-lightning/pull/4318)) - Added `.clone()` method to metrics ([#4318](https://github.com/PyTorchLightning/pytorch-lightning/pull/4318)) - Added `IoU` class interface ([#4704](https://github.com/PyTorchLightning/pytorch-lightning/pull/4704)) - Support to tie weights after moving model to TPU via `on_post_move_to_device` hook - Added missing val/test hooks in `LightningModule` ([#5467](https://github.com/PyTorchLightning/pytorch-lightning/pull/5467)) - The `Recall` and `Precision` metrics (and their functional counterparts `recall` and `precision`) can now be generalized to Recall@K and Precision@K with the use of `top_k` parameter ([#4842](https://github.com/PyTorchLightning/pytorch-lightning/pull/4842)) - Added `ModelPruning` Callback ([#5618](https://github.com/PyTorchLightning/pytorch-lightning/pull/5618), [#5825](https://github.com/PyTorchLightning/pytorch-lightning/pull/5825), [#6045](https://github.com/PyTorchLightning/pytorch-lightning/pull/6045)) - Added `PyTorchProfiler` ([#5560](https://github.com/PyTorchLightning/pytorch-lightning/pull/5560)) - Added compositional metrics ([#5464](https://github.com/PyTorchLightning/pytorch-lightning/pull/5464)) - Added Trainer method `predict(...)` for high performence predictions ([#5579](https://github.com/PyTorchLightning/pytorch-lightning/pull/5579)) - Added `on_before_batch_transfer` and `on_after_batch_transfer` data hooks ([#3671](https://github.com/PyTorchLightning/pytorch-lightning/pull/3671)) - Added AUC/AUROC class interface ([#5479](https://github.com/PyTorchLightning/pytorch-lightning/pull/5479)) - Added `PredictLoop` object ([#5752](https://github.com/PyTorchLightning/pytorch-lightning/pull/5752)) - Added `QuantizationAwareTraining` callback ([#5706](https://github.com/PyTorchLightning/pytorch-lightning/pull/5706), [#6040](https://github.com/PyTorchLightning/pytorch-lightning/pull/6040)) - Added `LightningModule.configure_callbacks` to enable the definition of model-specific callbacks ([#5621](https://github.com/PyTorchLightning/pytorch-lightning/pull/5621)) - Added `dim` to `PSNR` metric for mean-squared-error reduction ([#5957](https://github.com/PyTorchLightning/pytorch-lightning/pull/5957)) - Added promxial policy optimization template to pl_examples ([#5394](https://github.com/PyTorchLightning/pytorch-lightning/pull/5394)) - Added `log_graph` to `CometLogger` ([#5295](https://github.com/PyTorchLightning/pytorch-lightning/pull/5295)) - Added possibility for nested loaders ([#5404](https://github.com/PyTorchLightning/pytorch-lightning/pull/5404)) - Added `sync_step` to Wandb logger ([#5351](https://github.com/PyTorchLightning/pytorch-lightning/pull/5351)) - Added `StochasticWeightAveraging` callback ([#5640](https://github.com/PyTorchLightning/pytorch-lightning/pull/5640)) - Added `LightningDataModule.from_datasets(...)` ([#5133](https://github.com/PyTorchLightning/pytorch-lightning/pull/5133)) - Added `PL_TORCH_DISTRIBUTED_BACKEND` env variable to select backend ([#5981](https://github.com/PyTorchLightning/pytorch-lightning/pull/5981)) - Added `Trainer` flag to activate Stochastic Weight Averaging (SWA) `Trainer(stochastic_weight_avg=True)` ([#6038](https://github.com/PyTorchLightning/pytorch-lightning/pull/6038)) - Added DeepSpeed integration ([#5954](https://github.com/PyTorchLightning/pytorch-lightning/pull/5954), [#6042](https://github.com/PyTorchLightning/pytorch-lightning/pull/6042)) ### Changed - Changed `stat_scores` metric now calculates stat scores over all classes and gains new parameters, in line with the new `StatScores` metric ([#4839](https://github.com/PyTorchLightning/pytorch-lightning/pull/4839)) - Changed `computer_vision_fine_tunning` example to use `BackboneLambdaFinetuningCallback` ([#5377](https://github.com/PyTorchLightning/pytorch-lightning/pull/5377)) - Changed `automatic casting` for LoggerConnector `metrics` ([#5218](https://github.com/PyTorchLightning/pytorch-lightning/pull/5218)) - Changed `iou` [func] to allow float input ([#4704](https://github.com/PyTorchLightning/pytorch-lightning/pull/4704)) - Metric `compute()` method will no longer automatically call `reset()` ([#5409](https://github.com/PyTorchLightning/pytorch-lightning/pull/5409)) - Set PyTorch 1.4 as min requirements, also for testing and examples `torchvision>=0.5` and `torchtext>=0.5` ([#5418](https://github.com/PyTorchLightning/pytorch-lightning/pull/5418)) - Changed `callbacks` argument in `Trainer` to allow `Callback` input ([#5446](https://github.com/PyTorchLightning/pytorch-lightning/pull/5446)) - Changed the default of `find_unused_parameters` to `False` in DDP ([#5185](https://github.com/PyTorchLightning/pytorch-lightning/pull/5185)) - Changed `ModelCheckpoint` version suffixes to start at 1 ([#5008](https://github.com/PyTorchLightning/pytorch-lightning/pull/5008)) - Progress bar metrics tensors are now converted to float ([#5692](https://github.com/PyTorchLightning/pytorch-lightning/pull/5692)) - Changed the default value for the `progress_bar_refresh_rate` Trainer argument in Google COLAB notebooks to 20 ([#5516](https://github.com/PyTorchLightning/pytorch-lightning/pull/5516)) - Extended support for purely iteration-based training ([#5726](https://github.com/PyTorchLightning/pytorch-lightning/pull/5726)) - Made `LightningModule.global_rank`, `LightningModule.local_rank` and `LightningModule.logger` read-only properties ([#5730](https://github.com/PyTorchLightning/pytorch-lightning/pull/5730)) - Forced `ModelCheckpoint` callbacks to run after all others to guarantee all states are saved to the checkpoint ([#5731](https://github.com/PyTorchLightning/pytorch-lightning/pull/5731)) - Refactored Accelerators and Plugins: * Added base classes for plugins ([#5715](https://github.com/PyTorchLightning/pytorch-lightning/pull/5715)) * Added parallel plugins for DP, DDP, DDPSpawn, DDP2 and Horovod ([#5714](https://github.com/PyTorchLightning/pytorch-lightning/pull/5714)) * Precision Plugins ([#5718](https://github.com/PyTorchLightning/pytorch-lightning/pull/5718)) * Added new Accelerators for CPU, GPU and TPU ([#5719](https://github.com/PyTorchLightning/pytorch-lightning/pull/5719)) * Added RPC and Sharded plugins ([#5732](https://github.com/PyTorchLightning/pytorch-lightning/pull/5732)) * Added missing `LightningModule`-wrapper logic to new plugins and accelerator ([#5734](https://github.com/PyTorchLightning/pytorch-lightning/pull/5734)) * Moved device-specific teardown logic from training loop to accelerator ([#5973](https://github.com/PyTorchLightning/pytorch-lightning/pull/5973)) * Moved accelerator_connector.py to the connectors subfolder ([#6033](https://github.com/PyTorchLightning/pytorch-lightning/pull/6033)) * Trainer only references accelerator ([#6039](https://github.com/PyTorchLightning/pytorch-lightning/pull/6039)) * Made parallel devices optional across all plugins ([#6051](https://github.com/PyTorchLightning/pytorch-lightning/pull/6051)) * Cleaning ([#5948](https://github.com/PyTorchLightning/pytorch-lightning/pull/5948), [#5949](https://github.com/PyTorchLightning/pytorch-lightning/pull/5949), [#5950](https://github.com/PyTorchLightning/pytorch-lightning/pull/5950)) - Enabled `self.log` in callbacks ([#5094](https://github.com/PyTorchLightning/pytorch-lightning/pull/5094)) - Renamed xxx_AVAILABLE as protected ([#5082](https://github.com/PyTorchLightning/pytorch-lightning/pull/5082)) - Unified module names in Utils ([#5199](https://github.com/PyTorchLightning/pytorch-lightning/pull/5199)) - Separated utils: imports & enums ([#5256](https://github.com/PyTorchLightning/pytorch-lightning/pull/5256) [#5874](https://github.com/PyTorchLightning/pytorch-lightning/pull/5874)) - Refactor: clean trainer device & distributed getters ([#5300](https://github.com/PyTorchLightning/pytorch-lightning/pull/5300)) - Simplified training phase as LightningEnum ([#5419](https://github.com/PyTorchLightning/pytorch-lightning/pull/5419)) - Updated metrics to use LightningEnum ([#5689](https://github.com/PyTorchLightning/pytorch-lightning/pull/5689)) - Changed the seq of `on_train_batch_end`, `on_batch_end` & `on_train_epoch_end`, `on_epoch_end hooks` ([#5688](https://github.com/PyTorchLightning/pytorch-lightning/pull/5688)) - Refactored `setup_training` and remove `test_mode` ([#5388](https://github.com/PyTorchLightning/pytorch-lightning/pull/5388)) - Disabled training with zero `num_training_batches` when insufficient `limit_train_batches` ([#5703](https://github.com/PyTorchLightning/pytorch-lightning/pull/5703)) - Refactored `EpochResultStore` ([#5522](https://github.com/PyTorchLightning/pytorch-lightning/pull/5522)) - Update `lr_finder` to check for attribute if not running `fast_dev_run` ([#5990](https://github.com/PyTorchLightning/pytorch-lightning/pull/5990)) - LightningOptimizer manual optimizer is more flexible and expose `toggle_model` ([#5771](https://github.com/PyTorchLightning/pytorch-lightning/pull/5771)) - `MlflowLogger` limit parameter value length to 250 char ([#5893](https://github.com/PyTorchLightning/pytorch-lightning/pull/5893)) - Re-introduced fix for Hydra directory sync with multiple process ([#5993](https://github.com/PyTorchLightning/pytorch-lightning/pull/5993)) ### Deprecated - Function `stat_scores_multiple_classes` is deprecated in favor of `stat_scores` ([#4839](https://github.com/PyTorchLightning/pytorch-lightning/pull/4839)) - Moved accelerators and plugins to its `legacy` pkg ([#5645](https://github.com/PyTorchLightning/pytorch-lightning/pull/5645)) - Deprecated `LightningDistributedDataParallel` in favor of new wrapper module `LightningDistributedModule` ([#5185](https://github.com/PyTorchLightning/pytorch-lightning/pull/5185)) - Deprecated `LightningDataParallel` in favor of new wrapper module `LightningParallelModule` ([#5670](https://github.com/PyTorchLightning/pytorch-lightning/pull/5670)) - Renamed utils modules ([#5199](https://github.com/PyTorchLightning/pytorch-lightning/pull/5199)) * `argparse_utils` >> `argparse` * `model_utils` >> `model_helpers` * `warning_utils` >> `warnings` * `xla_device_utils` >> `xla_device` - Deprecated using `'val_loss'` to set the `ModelCheckpoint` monitor ([#6012](https://github.com/PyTorchLightning/pytorch-lightning/pull/6012)) - Deprecated `.get_model()` with explicit `.lightning_module` property ([#6035](https://github.com/PyTorchLightning/pytorch-lightning/pull/6035)) - Deprecated Trainer attribute `accelerator_backend` in favor of `accelerator` ([#6034](https://github.com/PyTorchLightning/pytorch-lightning/pull/6034)) ### Removed - Removed deprecated checkpoint argument `filepath` ([#5321](https://github.com/PyTorchLightning/pytorch-lightning/pull/5321)) - Removed deprecated `Fbeta`, `f1_score` and `fbeta_score` metrics ([#5322](https://github.com/PyTorchLightning/pytorch-lightning/pull/5322)) - Removed deprecated `TrainResult` ([#5323](https://github.com/PyTorchLightning/pytorch-lightning/pull/5323)) - Removed deprecated `EvalResult` ([#5633](https://github.com/PyTorchLightning/pytorch-lightning/pull/5633)) - Removed `LoggerStages` ([#5673](https://github.com/PyTorchLightning/pytorch-lightning/pull/5673)) ### Fixed - Fixed distributed setting and `ddp_cpu` only with `num_processes>1` ([#5297](https://github.com/PyTorchLightning/pytorch-lightning/pull/5297)) - Fixed `num_workers` for Windows example ([#5375](https://github.com/PyTorchLightning/pytorch-lightning/pull/5375)) - Fixed loading yaml ([#5619](https://github.com/PyTorchLightning/pytorch-lightning/pull/5619)) - Fixed support custom DataLoader with DDP if they can be re-instantiated ([#5745](https://github.com/PyTorchLightning/pytorch-lightning/pull/5745)) - Fixed repeated `.fit()` calls ignore max_steps iteration bound ([#5936](https://github.com/PyTorchLightning/pytorch-lightning/pull/5936)) - Fixed throwing `MisconfigurationError` on unknown mode ([#5255](https://github.com/PyTorchLightning/pytorch-lightning/pull/5255)) - Resolve bug with Finetuning ([#5744](https://github.com/PyTorchLightning/pytorch-lightning/pull/5744)) - Fixed `ModelCheckpoint` race condition in file existence check ([#5155](https://github.com/PyTorchLightning/pytorch-lightning/pull/5155)) - Fixed some compatibility with PyTorch 1.8 ([#5864](https://github.com/PyTorchLightning/pytorch-lightning/pull/5864)) - Fixed forward cache ([#5895](https://github.com/PyTorchLightning/pytorch-lightning/pull/5895)) - Fixed recursive detach of tensors to CPU ([#6007](https://github.com/PyTorchLightning/pytorch-lightning/pull/6007)) - Fixed passing wrong strings for scheduler interval doesn't throw an error ([#5923](https://github.com/PyTorchLightning/pytorch-lightning/pull/5923)) - Fixed wrong `requires_grad` state after `return None` with multiple optimizers ([#5738](https://github.com/PyTorchLightning/pytorch-lightning/pull/5638)) - Fixed add `on_epoch_end` hook at the end of `validation`, `test` epoch ([#5986](https://github.com/PyTorchLightning/pytorch-lightning/pull/5986)) - Fixed missing `process_dataloader` call for `TPUSpawn` when in distributed mode ([#6015](https://github.com/PyTorchLightning/pytorch-lightning/pull/6015)) - Fixed progress bar flickering by appending 0 to floats/strings ([#6009](https://github.com/PyTorchLightning/pytorch-lightning/pull/6009)) - Fixed synchronization issues with TPU training ([#6027](https://github.com/PyTorchLightning/pytorch-lightning/pull/6027)) - Fixed `hparams.yaml` saved twice when using `TensorBoardLogger` ([#5953](https://github.com/PyTorchLightning/pytorch-lightning/pull/5953)) - Fixed basic examples ([#5912](https://github.com/PyTorchLightning/pytorch-lightning/pull/5912), [#5985](https://github.com/PyTorchLightning/pytorch-lightning/pull/5985)) - Fixed `fairscale` compatible with PT 1.8 ([#5996](https://github.com/PyTorchLightning/pytorch-lightning/pull/5996)) - Ensured `process_dataloader` is called when `tpu_cores > 1` to use Parallel DataLoader ([#6015](https://github.com/PyTorchLightning/pytorch-lightning/pull/6015)) - Attempted SLURM auto resume call when non-shell call fails ([#6002](https://github.com/PyTorchLightning/pytorch-lightning/pull/6002)) - Fixed wrapping optimizers upon assignment ([#6006](https://github.com/PyTorchLightning/pytorch-lightning/pull/6006)) - Fixed allowing hashing of metrics with lists in their state ([#5939](https://github.com/PyTorchLightning/pytorch-lightning/pull/5939)) ## [1.1.8] - 2021-02-08 ### Fixed - Separate epoch validation from step validation ([#5208](https://github.com/PyTorchLightning/pytorch-lightning/pull/5208)) - Fixed `toggle_optimizers` not handling all optimizer parameters ([#5775](https://github.com/PyTorchLightning/pytorch-lightning/pull/5775)) ## [1.1.7] - 2021-02-03 ### Fixed - Fixed `TensorBoardLogger` not closing `SummaryWriter` on `finalize` ([#5696](https://github.com/PyTorchLightning/pytorch-lightning/pull/5696)) - Fixed filtering of pytorch "unsqueeze" warning when using DP ([#5622](https://github.com/PyTorchLightning/pytorch-lightning/pull/5622)) - Fixed `num_classes` argument in F1 metric ([#5663](https://github.com/PyTorchLightning/pytorch-lightning/pull/5663)) - Fixed `log_dir` property ([#5537](https://github.com/PyTorchLightning/pytorch-lightning/pull/5537)) - Fixed a race condition in `ModelCheckpoint` when checking if a checkpoint file exists ([#5144](https://github.com/PyTorchLightning/pytorch-lightning/pull/5144)) - Remove unnecessary intermediate layers in Dockerfiles ([#5697](https://github.com/PyTorchLightning/pytorch-lightning/pull/5697)) - Fixed auto learning rate ordering ([#5638](https://github.com/PyTorchLightning/pytorch-lightning/pull/5638)) ## [1.1.6] - 2021-01-26 ### Changed - Increased TPU check timeout from 20s to 100s ([#5598](https://github.com/PyTorchLightning/pytorch-lightning/pull/5598)) - Ignored `step` param in Neptune logger's log_metric method ([#5510](https://github.com/PyTorchLightning/pytorch-lightning/pull/5510)) - Pass batch outputs to `on_train_batch_end` instead of `epoch_end` outputs ([#4369](https://github.com/PyTorchLightning/pytorch-lightning/pull/4369)) ### Fixed - Fixed `toggle_optimizer` to reset `requires_grad` state ([#5574](https://github.com/PyTorchLightning/pytorch-lightning/pull/5574)) - Fixed FileNotFoundError for best checkpoint when using DDP with Hydra ([#5629](https://github.com/PyTorchLightning/pytorch-lightning/pull/5629)) - Fixed an error when logging a progress bar metric with a reserved name ([#5620](https://github.com/PyTorchLightning/pytorch-lightning/pull/5620)) - Fixed `Metric`'s `state_dict` not included when child modules ([#5614](https://github.com/PyTorchLightning/pytorch-lightning/pull/5614)) - Fixed Neptune logger creating multiple experiments when GPUs > 1 ([#3256](https://github.com/PyTorchLightning/pytorch-lightning/pull/3256)) - Fixed duplicate logs appearing in console when using the python logging module ([#5509](https://github.com/PyTorchLightning/pytorch-lightning/pull/5509)) - Fixed tensor printing in `trainer.test()` ([#5138](https://github.com/PyTorchLightning/pytorch-lightning/pull/5138)) - Fixed not using dataloader when `hparams` present ([#4559](https://github.com/PyTorchLightning/pytorch-lightning/pull/4559)) ## [1.1.5] - 2021-01-19 ### Fixed - Fixed a visual bug in the progress bar display initialization ([#4579](https://github.com/PyTorchLightning/pytorch-lightning/pull/4579)) - Fixed logging `on_train_batch_end` in a callback with multiple optimizers ([#5521](https://github.com/PyTorchLightning/pytorch-lightning/pull/5521)) - Fixed `reinit_scheduler_properties` with correct optimizer ([#5519](https://github.com/PyTorchLightning/pytorch-lightning/pull/5519)) - Fixed `val_check_interval` with `fast_dev_run` ([#5540](https://github.com/PyTorchLightning/pytorch-lightning/pull/5540)) ## [1.1.4] - 2021-01-12 ### Added - Add automatic optimization property setter to lightning module ([#5169](https://github.com/PyTorchLightning/pytorch-lightning/pull/5169)) ### Changed - Changed deprecated `enable_pl_optimizer=True` ([#5244](https://github.com/PyTorchLightning/pytorch-lightning/pull/5244)) ### Fixed - Fixed `transfer_batch_to_device` for DDP with `len(devices_ids) == 1` ([#5195](https://github.com/PyTorchLightning/pytorch-lightning/pull/5195)) - Logging only on `not should_accumulate()` during training ([#5417](https://github.com/PyTorchLightning/pytorch-lightning/pull/5417)) - Resolve interpolation bug with Hydra ([#5406](https://github.com/PyTorchLightning/pytorch-lightning/pull/5406)) - Check environ before selecting a seed to prevent warning message ([#4743](https://github.com/PyTorchLightning/pytorch-lightning/pull/4743)) - Fixed signature mismatch in `model_to_device` of `DDPCPUHPCAccelerator` ([#5505](https://github.com/PyTorchLightning/pytorch-lightning/pull/5505)) ## [1.1.3] - 2021-01-05 ### Added - Added a check for optimizer attached to `lr_scheduler` ([#5338](https://github.com/PyTorchLightning/pytorch-lightning/pull/5338)) - Added support for passing non-existing filepaths to `resume_from_checkpoint` ([#4402](https://github.com/PyTorchLightning/pytorch-lightning/pull/4402)) ### Changed - Skip restore from `resume_from_checkpoint` while `testing` ([#5161](https://github.com/PyTorchLightning/pytorch-lightning/pull/5161)) - Allowed `log_momentum` for adaptive optimizers in `LearningRateMonitor` ([#5333](https://github.com/PyTorchLightning/pytorch-lightning/pull/5333)) - Disabled checkpointing, earlystopping and logging with `fast_dev_run` ([#5277](https://github.com/PyTorchLightning/pytorch-lightning/pull/5277)) - Distributed group defaults to `WORLD` if `None` ([#5125](https://github.com/PyTorchLightning/pytorch-lightning/pull/5125)) ### Fixed - Fixed `trainer.test` returning non-test metrics ([#5214](https://github.com/PyTorchLightning/pytorch-lightning/pull/5214)) - Fixed metric state reset ([#5273](https://github.com/PyTorchLightning/pytorch-lightning/pull/5273)) - Fixed `--num-nodes` on `DDPSequentialPlugin` ([#5327](https://github.com/PyTorchLightning/pytorch-lightning/pull/5327)) - Fixed invalid value for `weights_summary` ([#5296](https://github.com/PyTorchLightning/pytorch-lightning/pull/5296)) - Fixed `Trainer.test` not using the latest `best_model_path` ([#5161](https://github.com/PyTorchLightning/pytorch-lightning/pull/5161)) - Fixed existence check for hparams not using underlying filesystem ([#5250](https://github.com/PyTorchLightning/pytorch-lightning/pull/5250)) - Fixed `LightningOptimizer` AMP bug ([#5191](https://github.com/PyTorchLightning/pytorch-lightning/pull/5191)) - Fixed casted key to string in `_flatten_dict` ([#5354](https://github.com/PyTorchLightning/pytorch-lightning/pull/5354)) ## [1.1.2] - 2020-12-23 ### Added - Support number for logging with `sync_dist=True` ([#5080](https://github.com/PyTorchLightning/pytorch-lightning/pull/5080)) - Added offset logging step when resuming for Wandb logger ([#5050](https://github.com/PyTorchLightning/pytorch-lightning/pull/5050)) ### Removed - `enable_pl_optimizer=False` by default to temporarily fix AMP issues ([#5163](https://github.com/PyTorchLightning/pytorch-lightning/pull/5163)) ### Fixed - Metric reduction with Logging ([#5150](https://github.com/PyTorchLightning/pytorch-lightning/pull/5150)) - Remove nan loss in manual optimization ([#5121](https://github.com/PyTorchLightning/pytorch-lightning/pull/5121)) - Un-balanced logging properly supported ([#5119](https://github.com/PyTorchLightning/pytorch-lightning/pull/5119)) - Fix hanging in DDP HPC accelerators ([#5157](https://github.com/PyTorchLightning/pytorch-lightning/pull/5157)) - Fix reset `TensorRunningAccum` ([#5106](https://github.com/PyTorchLightning/pytorch-lightning/pull/5106)) - Updated `DALIClassificationLoader` to not use deprecated arguments ([#4925](https://github.com/PyTorchLightning/pytorch-lightning/pull/4925)) - Corrected call to `torch.no_grad` ([#5124](https://github.com/PyTorchLightning/pytorch-lightning/pull/5124)) ## [1.1.1] - 2020-12-15 ### Added - Add a notebook example to reach a quick baseline of ~94% accuracy on CIFAR10 using Resnet in Lightning ([#4818](https://github.com/PyTorchLightning/pytorch-lightning/pull/4818)) ### Changed - Simplify accelerator steps ([#5015](https://github.com/PyTorchLightning/pytorch-lightning/pull/5015)) - Refactor load in checkpoint connector ([#4593](https://github.com/PyTorchLightning/pytorch-lightning/pull/4593)) - Fixed the saved filename in `ModelCheckpoint` when it already exists ([#4861](https://github.com/PyTorchLightning/pytorch-lightning/pull/4861)) ### Removed - Drop duplicate metrics ([#5014](https://github.com/PyTorchLightning/pytorch-lightning/pull/5014)) - Remove beta arg from F1 class and functional ([#5076](https://github.com/PyTorchLightning/pytorch-lightning/pull/5076)) ### Fixed - Fixed trainer by default `None` in `DDPAccelerator` ([#4915](https://github.com/PyTorchLightning/pytorch-lightning/pull/4915)) - Fixed `LightningOptimizer` to expose optimizer attributes ([#5095](https://github.com/PyTorchLightning/pytorch-lightning/pull/5095)) - Do not warn when the `name` key is used in the `lr_scheduler` dict ([#5057](https://github.com/PyTorchLightning/pytorch-lightning/pull/5057)) - Check if optimizer supports closure ([#4981](https://github.com/PyTorchLightning/pytorch-lightning/pull/4981)) - Add deprecated metric utility functions back to functional ( [#5067](https://github.com/PyTorchLightning/pytorch-lightning/pull/5067), [#5068](https://github.com/PyTorchLightning/pytorch-lightning/pull/5068)) - Allow any input in `to_onnx` and `to_torchscript` ([#4378](https://github.com/PyTorchLightning/pytorch-lightning/pull/4378)) - Fixed `DDPHPCAccelerator` hangs in DDP construction by calling `init_device` ([#5157](https://github.com/PyTorchLightning/pytorch-lightning/pull/5157)) ## [1.1.0] - 2020-12-09 ### Added - Added "monitor" key to saved `ModelCheckpoints` ([#4383](https://github.com/PyTorchLightning/pytorch-lightning/pull/4383)) - Added `ConfusionMatrix` class interface ([#4348](https://github.com/PyTorchLightning/pytorch-lightning/pull/4348)) - Added multiclass AUROC metric ([#4236](https://github.com/PyTorchLightning/pytorch-lightning/pull/4236)) - Added global step indexing to the checkpoint name for a better sub-epoch checkpointing experience ([#3807](https://github.com/PyTorchLightning/pytorch-lightning/pull/3807)) - Added optimizer hooks in callbacks ([#4379](https://github.com/PyTorchLightning/pytorch-lightning/pull/4379)) - Added option to log momentum ([#4384](https://github.com/PyTorchLightning/pytorch-lightning/pull/4384)) - Added `current_score` to `ModelCheckpoint.on_save_checkpoint` ([#4721](https://github.com/PyTorchLightning/pytorch-lightning/pull/4721)) - Added logging using `self.log` in train and evaluation for epoch end hooks ( [#4552](https://github.com/PyTorchLightning/pytorch-lightning/pull/4552), [#4495](https://github.com/PyTorchLightning/pytorch-lightning/pull/4495), [#4439](https://github.com/PyTorchLightning/pytorch-lightning/pull/4439), [#4684](https://github.com/PyTorchLightning/pytorch-lightning/pull/4684), [#4913](https://github.com/PyTorchLightning/pytorch-lightning/pull/4913)) - Added ability for DDP plugin to modify optimizer state saving ([#4675](https://github.com/PyTorchLightning/pytorch-lightning/pull/4675)) - Added `prefix` argument in loggers ([#4557](https://github.com/PyTorchLightning/pytorch-lightning/pull/4557)) - Added printing of total num of params, trainable and non-trainable params in ModelSummary ([#4521](https://github.com/PyTorchLightning/pytorch-lightning/pull/4521)) - Added `PrecisionRecallCurve, ROC, AveragePrecision` class metric ([#4549](https://github.com/PyTorchLightning/pytorch-lightning/pull/4549)) - Added custom `Apex` and `NativeAMP` as `Precision plugins` ([#4355](https://github.com/PyTorchLightning/pytorch-lightning/pull/4355)) - Added `DALI MNIST` example ([#3721](https://github.com/PyTorchLightning/pytorch-lightning/pull/3721)) - Added `sharded plugin` for DDP for multi-gpu training memory optimizations ( [#4639](https://github.com/PyTorchLightning/pytorch-lightning/pull/4639), [#4686](https://github.com/PyTorchLightning/pytorch-lightning/pull/4686), [#4737](https://github.com/PyTorchLightning/pytorch-lightning/pull/4737), [#4773](https://github.com/PyTorchLightning/pytorch-lightning/pull/4773)) - Added `experiment_id` to the NeptuneLogger ([#3462](https://github.com/PyTorchLightning/pytorch-lightning/pull/3462)) - Added `Pytorch Geometric` integration example with Lightning ([#4568](https://github.com/PyTorchLightning/pytorch-lightning/pull/4568)) - Added `all_gather` method to `LightningModule` which allows gradient based tensor synchronizations for use-cases such as negative sampling. ([#5012](https://github.com/PyTorchLightning/pytorch-lightning/pull/5012)) - Enabled `self.log` in most functions ([#4969](https://github.com/PyTorchLightning/pytorch-lightning/pull/4969)) - Added changeable extension variable for `ModelCheckpoint` ([#4977](https://github.com/PyTorchLightning/pytorch-lightning/pull/4977)) ### Changed - Tuner algorithms will be skipped if `fast_dev_run=True` ([#3903](https://github.com/PyTorchLightning/pytorch-lightning/pull/3903)) - `WandbLogger` does not force wandb `reinit` arg to True anymore and creates a run only when needed ([#4648](https://github.com/PyTorchLightning/pytorch-lightning/pull/4648)) - Changed `automatic_optimization` to be a model attribute ([#4602](https://github.com/PyTorchLightning/pytorch-lightning/pull/4602)) - Changed `Simple Profiler` report to order by percentage time spent + num calls ([#4880](https://github.com/PyTorchLightning/pytorch-lightning/pull/4880)) - Simplify optimization Logic ([#4984](https://github.com/PyTorchLightning/pytorch-lightning/pull/4984)) - Classification metrics overhaul ([#4837](https://github.com/PyTorchLightning/pytorch-lightning/pull/4837)) - Updated `fast_dev_run` to accept integer representing num_batches ([#4629](https://github.com/PyTorchLightning/pytorch-lightning/pull/4629)) - Refactored optimizer ([#4658](https://github.com/PyTorchLightning/pytorch-lightning/pull/4658)) ### Deprecated - Deprecated `prefix` argument in `ModelCheckpoint` ([#4765](https://github.com/PyTorchLightning/pytorch-lightning/pull/4765)) - Deprecated the old way of assigning hyper-parameters through `self.hparams = ...` ([#4813](https://github.com/PyTorchLightning/pytorch-lightning/pull/4813)) - Deprecated `mode='auto'` from `ModelCheckpoint` and `EarlyStopping` ([#4695](https://github.com/PyTorchLightning/pytorch-lightning/pull/4695)) ### Removed - Removed `reorder` parameter of the `auc` metric ([#5004](https://github.com/PyTorchLightning/pytorch-lightning/pull/5004)) - Removed `multiclass_roc` and `multiclass_precision_recall_curve`, use `roc` and `precision_recall_curve` instead ([#4549](https://github.com/PyTorchLightning/pytorch-lightning/pull/4549)) ### Fixed - Added feature to move tensors to CPU before saving ([#4309](https://github.com/PyTorchLightning/pytorch-lightning/pull/4309)) - Fixed `LoggerConnector` to have logged metrics on root device in DP ([#4138](https://github.com/PyTorchLightning/pytorch-lightning/pull/4138)) - Auto convert tensors to contiguous format when `gather_all` ([#4907](https://github.com/PyTorchLightning/pytorch-lightning/pull/4907)) - Fixed `PYTHONPATH` for ddp test model ([#4528](https://github.com/PyTorchLightning/pytorch-lightning/pull/4528)) - Fixed allowing logger to support indexing ([#4595](https://github.com/PyTorchLightning/pytorch-lightning/pull/4595)) - Fixed DDP and manual_optimization ([#4976](https://github.com/PyTorchLightning/pytorch-lightning/pull/4976)) ## [1.0.8] - 2020-11-24 ### Added - Added casting to python types for numpy scalars when logging `hparams` ([#4647](https://github.com/PyTorchLightning/pytorch-lightning/pull/4647)) - Added warning when progress bar refresh rate is less than 20 on Google Colab to prevent crashing ([#4654](https://github.com/PyTorchLightning/pytorch-lightning/pull/4654)) - Added `F1` class metric ([#4656](https://github.com/PyTorchLightning/pytorch-lightning/pull/4656)) ### Changed - Consistently use `step=trainer.global_step` in `LearningRateMonitor` independently of `logging_interval` ([#4376](https://github.com/PyTorchLightning/pytorch-lightning/pull/4376)) - Metric states are no longer as default added to `state_dict` ([#4685](https://github.com/PyTorchLightning/pytorch-lightning/pull/4685)) - Renamed class metric `Fbeta` >> `FBeta` ([#4656](https://github.com/PyTorchLightning/pytorch-lightning/pull/4656)) - Model summary: add 1 decimal place ([#4745](https://github.com/PyTorchLightning/pytorch-lightning/pull/4745)) - Do not override `PYTHONWARNINGS` ([#4700](https://github.com/PyTorchLightning/pytorch-lightning/pull/4700)) - Changed `init_ddp_connection` moved from `DDP` to `DDPPlugin` ([#4407](https://github.com/PyTorchLightning/pytorch-lightning/pull/4407)) ### Fixed - Fixed checkpoint `hparams` dict casting when `omegaconf` is available ([#4770](https://github.com/PyTorchLightning/pytorch-lightning/pull/4770)) - Fixed incomplete progress bars when total batches not divisible by refresh rate ([#4577](https://github.com/PyTorchLightning/pytorch-lightning/pull/4577)) - Updated SSIM metric ([#4566](https://github.com/PyTorchLightning/pytorch-lightning/pull/4566)) - Fixed batch_arg_name - add `batch_arg_name` to all calls to `_adjust_batch_size`bug ([#4812](https://github.com/PyTorchLightning/pytorch-lightning/pull/4812)) - Fixed `torchtext` data to GPU ([#4785](https://github.com/PyTorchLightning/pytorch-lightning/pull/4785)) - Fixed a crash bug in MLFlow logger ([#4716](https://github.com/PyTorchLightning/pytorch-lightning/pull/4716)) ## [1.0.7] - 2020-11-17 ### Added - Added lambda closure to `manual_optimizer_step` ([#4618](https://github.com/PyTorchLightning/pytorch-lightning/pull/4618)) ### Changed - Change Metrics `persistent` default mode to `False` ([#4685](https://github.com/PyTorchLightning/pytorch-lightning/pull/4685)) - LoggerConnector log_metrics will use `total_batch_idx` instead of `global_step` when logging on `training step` ([#4738](https://github.com/PyTorchLightning/pytorch-lightning/pull/4738)) ### Fixed - Prevent crash if `sync_dist=True` on CPU ([#4626](https://github.com/PyTorchLightning/pytorch-lightning/pull/4626)) - Fixed average pbar Metrics ([#4534](https://github.com/PyTorchLightning/pytorch-lightning/pull/4534)) - Fixed `setup` callback hook to correctly pass the LightningModule through ([#4608](https://github.com/PyTorchLightning/pytorch-lightning/pull/4608)) - Allowing decorate model init with saving `hparams` inside ([#4662](https://github.com/PyTorchLightning/pytorch-lightning/pull/4662)) - Fixed `split_idx` set by `LoggerConnector` in `on_trainer_init` to `Trainer` ([#4697](https://github.com/PyTorchLightning/pytorch-lightning/pull/4697)) ## [1.0.6] - 2020-11-11 ### Added - Added metrics aggregation in Horovod and fixed early stopping ([#3775](https://github.com/PyTorchLightning/pytorch-lightning/pull/3775)) - Added `manual_optimizer_step` which work with `AMP Native` and `accumulated_grad_batches` ([#4485](https://github.com/PyTorchLightning/pytorch-lightning/pull/4485)) - Added `persistent(mode)` method to metrics, to enable and disable metric states being added to `state_dict` ([#4482](https://github.com/PyTorchLightning/pytorch-lightning/pull/4482)) - Added congratulations at the end of our notebooks ([#4555](https://github.com/PyTorchLightning/pytorch-lightning/pull/4555)) - Added parameters `move_metrics_to_cpu` in Trainer to disable gpu leak ([#4592](https://github.com/PyTorchLightning/pytorch-lightning/pull/4592)) ### Changed - Changed `fsspec` to tuner ([#4458](https://github.com/PyTorchLightning/pytorch-lightning/pull/4458)) - Unify SLURM/TorchElastic under backend plugin ([#4578](https://github.com/PyTorchLightning/pytorch-lightning/pull/4578), [#4580](https://github.com/PyTorchLightning/pytorch-lightning/pull/4580), [#4581](https://github.com/PyTorchLightning/pytorch-lightning/pull/4581), [#4582](https://github.com/PyTorchLightning/pytorch-lightning/pull/4582), [#4583](https://github.com/PyTorchLightning/pytorch-lightning/pull/4583)) ### Fixed - Fixed feature-lack in `hpc_load` ([#4526](https://github.com/PyTorchLightning/pytorch-lightning/pull/4526)) - Fixed metrics states being overridden in DDP mode ([#4482](https://github.com/PyTorchLightning/pytorch-lightning/pull/4482)) - Fixed `lightning_getattr`, `lightning_hasattr` not finding the correct attributes in datamodule ([#4347](https://github.com/PyTorchLightning/pytorch-lightning/pull/4347)) - Fixed automatic optimization AMP by `manual_optimization_step` ([#4485](https://github.com/PyTorchLightning/pytorch-lightning/pull/4485)) - Replace `MisconfigurationException` with warning in `ModelCheckpoint` Callback ([#4560](https://github.com/PyTorchLightning/pytorch-lightning/pull/4560)) - Fixed logged keys in mlflow logger ([#4412](https://github.com/PyTorchLightning/pytorch-lightning/pull/4412)) - Fixed `is_picklable` by catching `AttributeError` ([#4508](https://github.com/PyTorchLightning/pytorch-lightning/pull/4508)) - Fixed multi test dataloaders dict `AttributeError` error ([#4480](https://github.com/PyTorchLightning/pytorch-lightning/pull/4480)) - Fixed show progress bar only for `progress_rank 0` on `DDP_SLURM` ([#4437](https://github.com/PyTorchLightning/pytorch-lightning/pull/4437)) ## [1.0.5] - 2020-11-03 ### Added - Added PyTorch 1.7 Stable support ([#3821](https://github.com/PyTorchLightning/pytorch-lightning/pull/3821)) - Added timeout for `tpu_device_exists` to ensure process does not hang indefinitely ([#4340](https://github.com/PyTorchLightning/pytorch-lightning/pull/4340)) ### Changed - W&B log in sync with `Trainer` step ([#4405](https://github.com/PyTorchLightning/pytorch-lightning/pull/4405)) - Hook `on_after_backward` is called only when `optimizer_step` is being called ([#4439](https://github.com/PyTorchLightning/pytorch-lightning/pull/4439)) - Moved `track_and_norm_grad` into `training loop` and called only when `optimizer_step` is being called ([#4439](https://github.com/PyTorchLightning/pytorch-lightning/pull/4439)) - Changed type checker with explicit cast of `ref_model` object ([#4457](https://github.com/PyTorchLightning/pytorch-lightning/pull/4457)) - Changed `distributed_backend` -> `accelerator` ([#4429](https://github.com/PyTorchLightning/pytorch-lightning/pull/4429)) ### Deprecated - Deprecated passing `ModelCheckpoint` instance to `checkpoint_callback` Trainer argument ([#4336](https://github.com/PyTorchLightning/pytorch-lightning/pull/4336)) ### Fixed - Disable saving checkpoints if not trained ([#4372](https://github.com/PyTorchLightning/pytorch-lightning/pull/4372)) - Fixed error using `auto_select_gpus=True` with `gpus=-1` ([#4209](https://github.com/PyTorchLightning/pytorch-lightning/pull/4209)) - Disabled training when `limit_train_batches=0` ([#4371](https://github.com/PyTorchLightning/pytorch-lightning/pull/4371)) - Fixed that metrics do not store computational graph for all seen data ([#4313](https://github.com/PyTorchLightning/pytorch-lightning/pull/4313)) - Fixed AMP unscale for `on_after_backward` ([#4439](https://github.com/PyTorchLightning/pytorch-lightning/pull/4439)) - Fixed TorchScript export when module includes Metrics ([#4428](https://github.com/PyTorchLightning/pytorch-lightning/pull/4428)) - Fixed TorchScript trace method's data to device and docstring ([#4360](https://github.com/PyTorchLightning/pytorch-lightning/pull/4360)) - Fixed CSV logger warning ([#4419](https://github.com/PyTorchLightning/pytorch-lightning/pull/4419)) - Fixed skip DDP parameter sync ([#4301](https://github.com/PyTorchLightning/pytorch-lightning/pull/4301)) - Fixed `WandbLogger` _sanitize_callable function ([#4422](https://github.com/PyTorchLightning/pytorch-lightning/pull/4422)) - Fixed `AMP Native` `_unscale` gradient ([#4441](https://github.com/PyTorchLightning/pytorch-lightning/pull/4441)) ## [1.0.4] - 2020-10-27 ### Added - Added `dirpath` and `filename` parameter in `ModelCheckpoint` ([#4213](https://github.com/PyTorchLightning/pytorch-lightning/pull/4213)) - Added plugins docs and DDPPlugin to customize ddp across all accelerators ([#4258](https://github.com/PyTorchLightning/pytorch-lightning/pull/4285)) - Added `strict` option to the scheduler dictionary ([#3586](https://github.com/PyTorchLightning/pytorch-lightning/pull/3586)) - Added `fsspec` support for profilers ([#4162](https://github.com/PyTorchLightning/pytorch-lightning/pull/4162)) - Added autogenerated helptext to `Trainer.add_argparse_args` ([#4344](https://github.com/PyTorchLightning/pytorch-lightning/pull/4344)) - Added support for string values in `Trainer`'s `profiler` parameter ([#3656](https://github.com/PyTorchLightning/pytorch-lightning/pull/3656)) - Added `optimizer_closure` to `optimizer.step` when supported ([#4190](https://github.com/PyTorchLightning/pytorch-lightning/pull/4190)) - Added unification of regression metrics ([#4166](https://github.com/PyTorchLightning/pytorch-lightning/pull/4166)) - Added checkpoint load from Bytes ([#4314](https://github.com/PyTorchLightning/pytorch-lightning/pull/4314)) ### Changed - Improved error messages for invalid `configure_optimizers` returns ([#3587](https://github.com/PyTorchLightning/pytorch-lightning/pull/3587)) - Allow changing the logged step value in `validation_step` ([#4130](https://github.com/PyTorchLightning/pytorch-lightning/pull/4130)) - Allow setting `replace_sampler_ddp=True` with a distributed sampler already added ([#4273](https://github.com/PyTorchLightning/pytorch-lightning/pull/4273)) - Fixed santized parameters for `WandbLogger.log_hyperparams` ([#4320](https://github.com/PyTorchLightning/pytorch-lightning/pull/4320)) ### Deprecated - Deprecated `filepath` in `ModelCheckpoint` ([#4213](https://github.com/PyTorchLightning/pytorch-lightning/pull/4213)) - Deprecated `reorder` parameter of the `auc` metric ([#4237](https://github.com/PyTorchLightning/pytorch-lightning/pull/4237)) - Deprecated bool values in `Trainer`'s `profiler` parameter ([#3656](https://github.com/PyTorchLightning/pytorch-lightning/pull/3656)) ### Fixed - Fixed setting device ids in DDP ([#4297](https://github.com/PyTorchLightning/pytorch-lightning/pull/4297)) - Fixed synchronization of best model path in `ddp_accelerator` ([#4323](https://github.com/PyTorchLightning/pytorch-lightning/pull/4323)) - Fixed `WandbLogger` not uploading checkpoint artifacts at the end of training ([#4341](https://github.com/PyTorchLightning/pytorch-lightning/pull/4341)) - Fixed `FBeta` computation ([#4183](https://github.com/PyTorchLightning/pytorch-lightning/pull/4183)) - Fixed `accumulation across batches` has completed `before breaking training loop` ([#4278](https://github.com/PyTorchLightning/pytorch-lightning/pull/4278)) - Fixed `ModelCheckpoint` don't increase current_epoch and global_step when not training ([#4291](https://github.com/PyTorchLightning/pytorch-lightning/pull/4291)) - Fixed `COMET_EXPERIMENT_KEY` environment variable usage in comet logger ([#4230](https://github.com/PyTorchLightning/pytorch-lightning/pull/4230)) ## [1.0.3] - 2020-10-20 ### Added - Added persistent flag to `Metric.add_state` ([#4195](https://github.com/PyTorchLightning/pytorch-lightning/pull/4195)) ### Changed - Used `checkpoint_connector.hpc_save` in SLURM ([#4217](https://github.com/PyTorchLightning/pytorch-lightning/pull/4217)) - Moved base req. to root ([#4219](https://github.com/PyTorchLightning/pytorch-lightning/pull/4219)) ### Fixed - Fixed `hparams` assign in init ([#4189](https://github.com/PyTorchLightning/pytorch-lightning/pull/4189)) - Fixed overwrite check for model hooks ([#4010](https://github.com/PyTorchLightning/pytorch-lightning/pull/4010)) ## [1.0.2] - 2020-10-15 ### Added - Added trace functionality to the function `to_torchscript` ([#4142](https://github.com/PyTorchLightning/pytorch-lightning/pull/4142)) ### Changed - Called `on_load_checkpoint` before loading `state_dict` ([#4057](https://github.com/PyTorchLightning/pytorch-lightning/pull/4057)) ### Removed - Removed duplicate metric vs step log for train loop ([#4173](https://github.com/PyTorchLightning/pytorch-lightning/pull/4173)) ### Fixed - Fixed the `self.log` problem in `validation_step()` ([#4169](https://github.com/PyTorchLightning/pytorch-lightning/pull/4169)) - Fixed `hparams` saving - save the state when `save_hyperparameters()` is called [in `__init__`] ([#4163](https://github.com/PyTorchLightning/pytorch-lightning/pull/4163)) - Fixed runtime failure while exporting `hparams` to yaml ([#4158](https://github.com/PyTorchLightning/pytorch-lightning/pull/4158)) ## [1.0.1] - 2020-10-14 ### Added - Added getstate/setstate method for torch.save serialization ([#4127](https://github.com/PyTorchLightning/pytorch-lightning/pull/4127)) ## [1.0.0] - 2020-10-13 ### Added - Added Explained Variance Metric + metric fix ([#4013](https://github.com/PyTorchLightning/pytorch-lightning/pull/4013)) - Added Metric <-> Lightning Module integration tests ([#4008](https://github.com/PyTorchLightning/pytorch-lightning/pull/4008)) - Added parsing OS env vars in `Trainer` ([#4022](https://github.com/PyTorchLightning/pytorch-lightning/pull/4022)) - Added classification metrics ([#4043](https://github.com/PyTorchLightning/pytorch-lightning/pull/4043)) - Updated explained variance metric ([#4024](https://github.com/PyTorchLightning/pytorch-lightning/pull/4024)) - Enabled plugins ([#4041](https://github.com/PyTorchLightning/pytorch-lightning/pull/4041)) - Enabled custom clusters ([#4048](https://github.com/PyTorchLightning/pytorch-lightning/pull/4048)) - Enabled passing in custom accelerators ([#4050](https://github.com/PyTorchLightning/pytorch-lightning/pull/4050)) - Added `LightningModule.toggle_optimizer` ([#4058](https://github.com/PyTorchLightning/pytorch-lightning/pull/4058)) - Added `LightningModule.manual_backward` ([#4063](https://github.com/PyTorchLightning/pytorch-lightning/pull/4063)) - Added `output` argument to `*_batch_end` hooks ([#3965](https://github.com/PyTorchLightning/pytorch-lightning/pull/3965), [#3966](https://github.com/PyTorchLightning/pytorch-lightning/pull/3966)) - Added `output` argument to `*_epoch_end` hooks ([#3967](https://github.com/PyTorchLightning/pytorch-lightning/pull/3967)) ### Changed - Integrated metrics API with self.log ([#3961](https://github.com/PyTorchLightning/pytorch-lightning/pull/3961)) - Decoupled Apex ([#4052](https://github.com/PyTorchLightning/pytorch-lightning/pull/4052), [#4054](https://github.com/PyTorchLightning/pytorch-lightning/pull/4054), [#4055](https://github.com/PyTorchLightning/pytorch-lightning/pull/4055), [#4056](https://github.com/PyTorchLightning/pytorch-lightning/pull/4056), [#4058](https://github.com/PyTorchLightning/pytorch-lightning/pull/4058), [#4060](https://github.com/PyTorchLightning/pytorch-lightning/pull/4060), [#4061](https://github.com/PyTorchLightning/pytorch-lightning/pull/4061), [#4062](https://github.com/PyTorchLightning/pytorch-lightning/pull/4062), [#4063](https://github.com/PyTorchLightning/pytorch-lightning/pull/4063), [#4064](https://github.com/PyTorchLightning/pytorch-lightning/pull/4064), [#4065](https://github.com/PyTorchLightning/pytorch-lightning/pull/4065)) - Renamed all backends to `Accelerator` ([#4066](https://github.com/PyTorchLightning/pytorch-lightning/pull/4066)) - Enabled manual returns ([#4089](https://github.com/PyTorchLightning/pytorch-lightning/pull/4089)) ### Removed - Removed support for EvalResult and TrainResult ([#3968](https://github.com/PyTorchLightning/pytorch-lightning/pull/3968)) - Removed deprecated trainer flags: `overfit_pct`, `log_save_interval`, `row_log_interval` ([#3969](https://github.com/PyTorchLightning/pytorch-lightning/pull/3969)) - Removed deprecated early_stop_callback ([#3982](https://github.com/PyTorchLightning/pytorch-lightning/pull/3982)) - Removed deprecated model hooks ([#3980](https://github.com/PyTorchLightning/pytorch-lightning/pull/3980)) - Removed deprecated callbacks ([#3979](https://github.com/PyTorchLightning/pytorch-lightning/pull/3979)) - Removed `trainer` argument in `LightningModule.backward` [#4056](https://github.com/PyTorchLightning/pytorch-lightning/pull/4056)) ### Fixed - Fixed `current_epoch` property update to reflect true epoch number inside `LightningDataModule`, when `reload_dataloaders_every_epoch=True`. ([#3974](https://github.com/PyTorchLightning/pytorch-lightning/pull/3974)) - Fixed to print scaler value in progress bar ([#4053](https://github.com/PyTorchLightning/pytorch-lightning/pull/4053)) - Fixed mismatch between docstring and code regarding when `on_load_checkpoint` hook is called ([#3996](https://github.com/PyTorchLightning/pytorch-lightning/pull/3996)) ## [0.10.0] - 2020-10-07 ### Added - Added new Metrics API. ([#3868](https://github.com/PyTorchLightning/pytorch-lightning/pull/3868), [#3921](https://github.com/PyTorchLightning/pytorch-lightning/pull/3921)) - Enable PyTorch 1.7 compatibility ([#3541](https://github.com/PyTorchLightning/pytorch-lightning/pull/3541)) - Added `LightningModule.to_torchscript` to support exporting as `ScriptModule` ([#3258](https://github.com/PyTorchLightning/pytorch-lightning/pull/3258)) - Added warning when dropping unpicklable `hparams` ([#2874](https://github.com/PyTorchLightning/pytorch-lightning/pull/2874)) - Added EMB similarity ([#3349](https://github.com/PyTorchLightning/pytorch-lightning/pull/3349)) - Added `ModelCheckpoint.to_yaml` method ([#3048](https://github.com/PyTorchLightning/pytorch-lightning/pull/3048)) - Allow `ModelCheckpoint` monitor to be `None`, meaning it will always save ([#3630](https://github.com/PyTorchLightning/pytorch-lightning/pull/3630)) - Disabled optimizers setup during testing ([#3059](https://github.com/PyTorchLightning/pytorch-lightning/pull/3059)) - Added support for datamodules to save and load checkpoints when training ([#3563](https://github.com/PyTorchLightning/pytorch-lightning/pull/3563)) - Added support for datamodule in learning rate finder ([#3425](https://github.com/PyTorchLightning/pytorch-lightning/pull/3425)) - Added gradient clip test for native AMP ([#3754](https://github.com/PyTorchLightning/pytorch-lightning/pull/3754)) - Added dist lib to enable syncing anything across devices ([#3762](https://github.com/PyTorchLightning/pytorch-lightning/pull/3762)) - Added `broadcast` to `TPUBackend` ([#3814](https://github.com/PyTorchLightning/pytorch-lightning/pull/3814)) - Added `XLADeviceUtils` class to check XLA device type ([#3274](https://github.com/PyTorchLightning/pytorch-lightning/pull/3274)) ### Changed - Refactored accelerator backends: * moved TPU `xxx_step` to backend ([#3118](https://github.com/PyTorchLightning/pytorch-lightning/pull/3118)) * refactored DDP backend `forward` ([#3119](https://github.com/PyTorchLightning/pytorch-lightning/pull/3119)) * refactored GPU backend `__step` ([#3120](https://github.com/PyTorchLightning/pytorch-lightning/pull/3120)) * refactored Horovod backend ([#3121](https://github.com/PyTorchLightning/pytorch-lightning/pull/3121), [#3122](https://github.com/PyTorchLightning/pytorch-lightning/pull/3122)) * remove obscure forward call in eval + CPU backend `___step` ([#3123](https://github.com/PyTorchLightning/pytorch-lightning/pull/3123)) * reduced all simplified forward ([#3126](https://github.com/PyTorchLightning/pytorch-lightning/pull/3126)) * added hook base method ([#3127](https://github.com/PyTorchLightning/pytorch-lightning/pull/3127)) * refactor eval loop to use hooks - use `test_mode` for if so we can split later ([#3129](https://github.com/PyTorchLightning/pytorch-lightning/pull/3129)) * moved `___step_end` hooks ([#3130](https://github.com/PyTorchLightning/pytorch-lightning/pull/3130)) * training forward refactor ([#3134](https://github.com/PyTorchLightning/pytorch-lightning/pull/3134)) * training AMP scaling refactor ([#3135](https://github.com/PyTorchLightning/pytorch-lightning/pull/3135)) * eval step scaling factor ([#3136](https://github.com/PyTorchLightning/pytorch-lightning/pull/3136)) * add eval loop object to streamline eval loop ([#3138](https://github.com/PyTorchLightning/pytorch-lightning/pull/3138)) * refactored dataloader process hook ([#3139](https://github.com/PyTorchLightning/pytorch-lightning/pull/3139)) * refactored inner eval loop ([#3141](https://github.com/PyTorchLightning/pytorch-lightning/pull/3141)) * final inner eval loop hooks ([#3154](https://github.com/PyTorchLightning/pytorch-lightning/pull/3154)) * clean up hooks in `run_evaluation` ([#3156](https://github.com/PyTorchLightning/pytorch-lightning/pull/3156)) * clean up data reset ([#3161](https://github.com/PyTorchLightning/pytorch-lightning/pull/3161)) * expand eval loop out ([#3165](https://github.com/PyTorchLightning/pytorch-lightning/pull/3165)) * moved hooks around in eval loop ([#3195](https://github.com/PyTorchLightning/pytorch-lightning/pull/3195)) * remove `_evaluate` fx ([#3197](https://github.com/PyTorchLightning/pytorch-lightning/pull/3197)) * `Trainer.fit` hook clean up ([#3198](https://github.com/PyTorchLightning/pytorch-lightning/pull/3198)) * DDPs train hooks ([#3203](https://github.com/PyTorchLightning/pytorch-lightning/pull/3203)) * refactor DDP backend ([#3204](https://github.com/PyTorchLightning/pytorch-lightning/pull/3204), [#3207](https://github.com/PyTorchLightning/pytorch-lightning/pull/3207), [#3208](https://github.com/PyTorchLightning/pytorch-lightning/pull/3208), [#3209](https://github.com/PyTorchLightning/pytorch-lightning/pull/3209), [#3210](https://github.com/PyTorchLightning/pytorch-lightning/pull/3210)) * reduced accelerator selection ([#3211](https://github.com/PyTorchLightning/pytorch-lightning/pull/3211)) * group prepare data hook ([#3212](https://github.com/PyTorchLightning/pytorch-lightning/pull/3212)) * added data connector ([#3285](https://github.com/PyTorchLightning/pytorch-lightning/pull/3285)) * modular is_overridden ([#3290](https://github.com/PyTorchLightning/pytorch-lightning/pull/3290)) * adding `Trainer.tune()` ([#3293](https://github.com/PyTorchLightning/pytorch-lightning/pull/3293)) * move `run_pretrain_routine` -> `setup_training` ([#3294](https://github.com/PyTorchLightning/pytorch-lightning/pull/3294)) * move train outside of setup training ([#3297](https://github.com/PyTorchLightning/pytorch-lightning/pull/3297)) * move `prepare_data` to data connector ([#3307](https://github.com/PyTorchLightning/pytorch-lightning/pull/3307)) * moved accelerator router ([#3309](https://github.com/PyTorchLightning/pytorch-lightning/pull/3309)) * train loop refactor - moving train loop to own object ([#3310](https://github.com/PyTorchLightning/pytorch-lightning/pull/3310), [#3312](https://github.com/PyTorchLightning/pytorch-lightning/pull/3312), [#3313](https://github.com/PyTorchLightning/pytorch-lightning/pull/3313), [#3314](https://github.com/PyTorchLightning/pytorch-lightning/pull/3314)) * duplicate data interface definition up into DataHooks class ([#3344](https://github.com/PyTorchLightning/pytorch-lightning/pull/3344)) * inner train loop ([#3359](https://github.com/PyTorchLightning/pytorch-lightning/pull/3359), [#3361](https://github.com/PyTorchLightning/pytorch-lightning/pull/3361), [#3362](https://github.com/PyTorchLightning/pytorch-lightning/pull/3362), [#3363](https://github.com/PyTorchLightning/pytorch-lightning/pull/3363), [#3365](https://github.com/PyTorchLightning/pytorch-lightning/pull/3365), [#3366](https://github.com/PyTorchLightning/pytorch-lightning/pull/3366), [#3367](https://github.com/PyTorchLightning/pytorch-lightning/pull/3367), [#3368](https://github.com/PyTorchLightning/pytorch-lightning/pull/3368), [#3369](https://github.com/PyTorchLightning/pytorch-lightning/pull/3369), [#3370](https://github.com/PyTorchLightning/pytorch-lightning/pull/3370), [#3371](https://github.com/PyTorchLightning/pytorch-lightning/pull/3371), [#3372](https://github.com/PyTorchLightning/pytorch-lightning/pull/3372), [#3373](https://github.com/PyTorchLightning/pytorch-lightning/pull/3373), [#3374](https://github.com/PyTorchLightning/pytorch-lightning/pull/3374), [#3375](https://github.com/PyTorchLightning/pytorch-lightning/pull/3375), [#3376](https://github.com/PyTorchLightning/pytorch-lightning/pull/3376), [#3385](https://github.com/PyTorchLightning/pytorch-lightning/pull/3385), [#3388](https://github.com/PyTorchLightning/pytorch-lightning/pull/3388), [#3397](https://github.com/PyTorchLightning/pytorch-lightning/pull/3397)) * all logging related calls in a connector ([#3395](https://github.com/PyTorchLightning/pytorch-lightning/pull/3395)) * device parser ([#3400](https://github.com/PyTorchLightning/pytorch-lightning/pull/3400), [#3405](https://github.com/PyTorchLightning/pytorch-lightning/pull/3405)) * added model connector ([#3407](https://github.com/PyTorchLightning/pytorch-lightning/pull/3407)) * moved eval loop logging to loggers ([#3408](https://github.com/PyTorchLightning/pytorch-lightning/pull/3408)) * moved eval loop (#3412[#3408](https://github.com/PyTorchLightning/pytorch-lightning/pull/3408)) * trainer/separate argparse ([#3421](https://github.com/PyTorchLightning/pytorch-lightning/pull/3421), [#3428](https://github.com/PyTorchLightning/pytorch-lightning/pull/3428), [#3432](https://github.com/PyTorchLightning/pytorch-lightning/pull/3432)) * move `lr_finder` ([#3434](https://github.com/PyTorchLightning/pytorch-lightning/pull/3434)) * organize args (#[#3435](https://github.com/PyTorchLightning/pytorch-lightning/pull/3435), [#3442](https://github.com/PyTorchLightning/pytorch-lightning/pull/3442), [#3447](https://github.com/PyTorchLightning/pytorch-lightning/pull/3447), [#3448](https://github.com/PyTorchLightning/pytorch-lightning/pull/3448), [#3449](https://github.com/PyTorchLightning/pytorch-lightning/pull/3449), [#3456](https://github.com/PyTorchLightning/pytorch-lightning/pull/3456)) * move specific accelerator code ([#3457](https://github.com/PyTorchLightning/pytorch-lightning/pull/3457)) * group connectors ([#3472](https://github.com/PyTorchLightning/pytorch-lightning/pull/3472)) * accelerator connector methods x/n ([#3469](https://github.com/PyTorchLightning/pytorch-lightning/pull/3469), [#3470](https://github.com/PyTorchLightning/pytorch-lightning/pull/3470), [#3474](https://github.com/PyTorchLightning/pytorch-lightning/pull/3474)) * merge backends x/n ([#3476](https://github.com/PyTorchLightning/pytorch-lightning/pull/3476), [#3477](https://github.com/PyTorchLightning/pytorch-lightning/pull/3477), [#3478](https://github.com/PyTorchLightning/pytorch-lightning/pull/3478), [#3480](https://github.com/PyTorchLightning/pytorch-lightning/pull/3480), [#3482](https://github.com/PyTorchLightning/pytorch-lightning/pull/3482)) * apex plugin ([#3502](https://github.com/PyTorchLightning/pytorch-lightning/pull/3502)) * precision plugins ([#3504](https://github.com/PyTorchLightning/pytorch-lightning/pull/3504)) * Result - make monitor default to `checkpoint_on` to simplify ([#3571](https://github.com/PyTorchLightning/pytorch-lightning/pull/3571)) * reference to the Trainer on the `LightningDataModule` ([#3684](https://github.com/PyTorchLightning/pytorch-lightning/pull/3684)) * add `.log` to lightning module ([#3686](https://github.com/PyTorchLightning/pytorch-lightning/pull/3686), [#3699](https://github.com/PyTorchLightning/pytorch-lightning/pull/3699), [#3701](https://github.com/PyTorchLightning/pytorch-lightning/pull/3701), [#3704](https://github.com/PyTorchLightning/pytorch-lightning/pull/3704), [#3715](https://github.com/PyTorchLightning/pytorch-lightning/pull/3715)) * enable tracking original metric when step and epoch are both true ([#3685](https://github.com/PyTorchLightning/pytorch-lightning/pull/3685)) * deprecated results obj, added support for simpler comms ([#3681](https://github.com/PyTorchLightning/pytorch-lightning/pull/3681)) * move backends back to individual files ([#3712](https://github.com/PyTorchLightning/pytorch-lightning/pull/3712)) * fixes logging for eval steps ([#3763](https://github.com/PyTorchLightning/pytorch-lightning/pull/3763)) * decoupled DDP, DDP spawn ([#3733](https://github.com/PyTorchLightning/pytorch-lightning/pull/3733), [#3766](https://github.com/PyTorchLightning/pytorch-lightning/pull/3766), [#3767](https://github.com/PyTorchLightning/pytorch-lightning/pull/3767), [#3774](https://github.com/PyTorchLightning/pytorch-lightning/pull/3774), [#3802](https://github.com/PyTorchLightning/pytorch-lightning/pull/3802), [#3806](https://github.com/PyTorchLightning/pytorch-lightning/pull/3806), [#3817](https://github.com/PyTorchLightning/pytorch-lightning/pull/3817), [#3819](https://github.com/PyTorchLightning/pytorch-lightning/pull/3819), [#3927](https://github.com/PyTorchLightning/pytorch-lightning/pull/3927)) * remove weight loading hack for ddp_cpu ([#3808](https://github.com/PyTorchLightning/pytorch-lightning/pull/3808)) * separate `torchelastic` from DDP ([#3810](https://github.com/PyTorchLightning/pytorch-lightning/pull/3810)) * separate SLURM from DDP ([#3809](https://github.com/PyTorchLightning/pytorch-lightning/pull/3809)) * decoupled DDP2 ([#3816](https://github.com/PyTorchLightning/pytorch-lightning/pull/3816)) * bug fix with logging val epoch end + monitor ([#3812](https://github.com/PyTorchLightning/pytorch-lightning/pull/3812)) * callback system and init DDP ([#3836](https://github.com/PyTorchLightning/pytorch-lightning/pull/3836)) * adding compute environments ([#3837](https://github.com/PyTorchLightning/pytorch-lightning/pull/3837), [#3842](https://github.com/PyTorchLightning/pytorch-lightning/pull/3842)) * epoch can now log independently ([#3843](https://github.com/PyTorchLightning/pytorch-lightning/pull/3843)) * test selecting the correct backend. temp backends while slurm and TorchElastic are decoupled ([#3848](https://github.com/PyTorchLightning/pytorch-lightning/pull/3848)) * fixed `init_slurm_connection` causing hostname errors ([#3856](https://github.com/PyTorchLightning/pytorch-lightning/pull/3856)) * moves init apex from LM to apex connector ([#3923](https://github.com/PyTorchLightning/pytorch-lightning/pull/3923)) * moves sync bn to each backend ([#3925](https://github.com/PyTorchLightning/pytorch-lightning/pull/3925)) * moves configure ddp to each backend ([#3924](https://github.com/PyTorchLightning/pytorch-lightning/pull/3924)) - Deprecation warning ([#3844](https://github.com/PyTorchLightning/pytorch-lightning/pull/3844)) - Changed `LearningRateLogger` to `LearningRateMonitor` ([#3251](https://github.com/PyTorchLightning/pytorch-lightning/pull/3251)) - Used `fsspec` instead of `gfile` for all IO ([#3320](https://github.com/PyTorchLightning/pytorch-lightning/pull/3320)) * Swaped `torch.load` for `fsspec` load in DDP spawn backend ([#3787](https://github.com/PyTorchLightning/pytorch-lightning/pull/3787)) * Swaped `torch.load` for `fsspec` load in cloud_io loading ([#3692](https://github.com/PyTorchLightning/pytorch-lightning/pull/3692)) * Added support for `to_disk()` to use remote filepaths with `fsspec` ([#3930](https://github.com/PyTorchLightning/pytorch-lightning/pull/3930)) * Updated model_checkpoint's to_yaml to use `fsspec` open ([#3801](https://github.com/PyTorchLightning/pytorch-lightning/pull/3801)) * Fixed `fsspec` is inconsistent when doing `fs.ls` ([#3805](https://github.com/PyTorchLightning/pytorch-lightning/pull/3805)) - Refactor `GPUStatsMonitor` to improve training speed ([#3257](https://github.com/PyTorchLightning/pytorch-lightning/pull/3257)) - Changed IoU score behavior for classes absent in target and pred ([#3098](https://github.com/PyTorchLightning/pytorch-lightning/pull/3098)) - Changed IoU `remove_bg` bool to `ignore_index` optional int ([#3098](https://github.com/PyTorchLightning/pytorch-lightning/pull/3098)) - Changed defaults of `save_top_k` and `save_last` to `None` in ModelCheckpoint ([#3680](https://github.com/PyTorchLightning/pytorch-lightning/pull/3680)) - `row_log_interval` and `log_save_interval` are now based on training loop's `global_step` instead of epoch-internal batch index ([#3667](https://github.com/PyTorchLightning/pytorch-lightning/pull/3667)) - Silenced some warnings. verified ddp refactors ([#3483](https://github.com/PyTorchLightning/pytorch-lightning/pull/3483)) - Cleaning up stale logger tests ([#3490](https://github.com/PyTorchLightning/pytorch-lightning/pull/3490)) - Allow `ModelCheckpoint` monitor to be `None` ([#3633](https://github.com/PyTorchLightning/pytorch-lightning/pull/3633)) - Enable `None` model checkpoint default ([#3669](https://github.com/PyTorchLightning/pytorch-lightning/pull/3669)) - Skipped `best_model_path` if `checkpoint_callback` is `None` ([#2962](https://github.com/PyTorchLightning/pytorch-lightning/pull/2962)) - Used `raise .. from ..` to explicitly chain exceptions ([#3750](https://github.com/PyTorchLightning/pytorch-lightning/pull/3750)) - Mocking loggers ([#3596](https://github.com/PyTorchLightning/pytorch-lightning/pull/3596), [#3617](https://github.com/PyTorchLightning/pytorch-lightning/pull/3617), [#3851](https://github.com/PyTorchLightning/pytorch-lightning/pull/3851), [#3859](https://github.com/PyTorchLightning/pytorch-lightning/pull/3859), [#3884](https://github.com/PyTorchLightning/pytorch-lightning/pull/3884), [#3853](https://github.com/PyTorchLightning/pytorch-lightning/pull/3853), [#3910](https://github.com/PyTorchLightning/pytorch-lightning/pull/3910), [#3889](https://github.com/PyTorchLightning/pytorch-lightning/pull/3889), [#3926](https://github.com/PyTorchLightning/pytorch-lightning/pull/3926)) - Write predictions in LightningModule instead of EvalResult [#3882](https://github.com/PyTorchLightning/pytorch-lightning/pull/3882) ### Deprecated - Deprecated `TrainResult` and `EvalResult`, use `self.log` and `self.write` from the `LightningModule` to log metrics and write predictions. `training_step` can now only return a scalar (for the loss) or a dictionary with anything you want. ([#3681](https://github.com/PyTorchLightning/pytorch-lightning/pull/3681)) - Deprecate `early_stop_callback` Trainer argument ([#3845](https://github.com/PyTorchLightning/pytorch-lightning/pull/3845)) - Rename Trainer arguments `row_log_interval` >> `log_every_n_steps` and `log_save_interval` >> `flush_logs_every_n_steps` ([#3748](https://github.com/PyTorchLightning/pytorch-lightning/pull/3748)) ### Removed - Removed experimental Metric API ([#3943](https://github.com/PyTorchLightning/pytorch-lightning/pull/3943), [#3949](https://github.com/PyTorchLightning/pytorch-lightning/pull/3949), [#3946](https://github.com/PyTorchLightning/pytorch-lightning/pull/3946)), listed changes before final removal: * Added `EmbeddingSimilarity` metric ([#3349](https://github.com/PyTorchLightning/pytorch-lightning/pull/3349), [#3358](https://github.com/PyTorchLightning/pytorch-lightning/pull/3358)) * Added hooks to metric module interface ([#2528](https://github.com/PyTorchLightning/pytorch-lightning/pull/2528)) * Added error when AUROC metric is used for multiclass problems ([#3350](https://github.com/PyTorchLightning/pytorch-lightning/pull/3350)) * Fixed `ModelCheckpoint` with `save_top_k=-1` option not tracking the best models when a monitor metric is available ([#3735](https://github.com/PyTorchLightning/pytorch-lightning/pull/3735)) * Fixed counter-intuitive error being thrown in `Accuracy` metric for zero target tensor ([#3764](https://github.com/PyTorchLightning/pytorch-lightning/pull/3764)) * Fixed aggregation of metrics ([#3517](https://github.com/PyTorchLightning/pytorch-lightning/pull/3517)) * Fixed Metric aggregation ([#3321](https://github.com/PyTorchLightning/pytorch-lightning/pull/3321)) * Fixed RMSLE metric ([#3188](https://github.com/PyTorchLightning/pytorch-lightning/pull/3188)) * Renamed `reduction` to `class_reduction` in classification metrics ([#3322](https://github.com/PyTorchLightning/pytorch-lightning/pull/3322)) * Changed `class_reduction` similar to sklearn for classification metrics ([#3322](https://github.com/PyTorchLightning/pytorch-lightning/pull/3322)) * Renaming of precision recall metric ([#3308](https://github.com/PyTorchLightning/pytorch-lightning/pull/3308)) ### Fixed - Fixed `on_train_batch_start` hook to end epoch early ([#3700](https://github.com/PyTorchLightning/pytorch-lightning/pull/3700)) - Fixed `num_sanity_val_steps` is clipped to `limit_val_batches` ([#2917](https://github.com/PyTorchLightning/pytorch-lightning/pull/2917)) - Fixed ONNX model save on GPU ([#3145](https://github.com/PyTorchLightning/pytorch-lightning/pull/3145)) - Fixed `GpuUsageLogger` to work on different platforms ([#3008](https://github.com/PyTorchLightning/pytorch-lightning/pull/3008)) - Fixed auto-scale batch size not dumping `auto_lr_find` parameter ([#3151](https://github.com/PyTorchLightning/pytorch-lightning/pull/3151)) - Fixed `batch_outputs` with optimizer frequencies ([#3229](https://github.com/PyTorchLightning/pytorch-lightning/pull/3229)) - Fixed setting batch size in `LightningModule.datamodule` when using `auto_scale_batch_size` ([#3266](https://github.com/PyTorchLightning/pytorch-lightning/pull/3266)) - Fixed Horovod distributed backend compatibility with native AMP ([#3404](https://github.com/PyTorchLightning/pytorch-lightning/pull/3404)) - Fixed batch size auto scaling exceeding the size of the dataset ([#3271](https://github.com/PyTorchLightning/pytorch-lightning/pull/3271)) - Fixed getting `experiment_id` from MLFlow only once instead of each training loop ([#3394](https://github.com/PyTorchLightning/pytorch-lightning/pull/3394)) - Fixed `overfit_batches` which now correctly disables shuffling for the training loader. ([#3501](https://github.com/PyTorchLightning/pytorch-lightning/pull/3501)) - Fixed gradient norm tracking for `row_log_interval > 1` ([#3489](https://github.com/PyTorchLightning/pytorch-lightning/pull/3489)) - Fixed `ModelCheckpoint` name formatting ([#3164](https://github.com/PyTorchLightning/pytorch-lightning/pull/3163)) - Fixed example implementation of AutoEncoder ([#3190](https://github.com/PyTorchLightning/pytorch-lightning/pull/3190)) - Fixed invalid paths when remote logging with TensorBoard ([#3236](https://github.com/PyTorchLightning/pytorch-lightning/pull/3236)) - Fixed change `t()` to `transpose()` as XLA devices do not support `.t()` on 1-dim tensor ([#3252](https://github.com/PyTorchLightning/pytorch-lightning/pull/3252)) - Fixed (weights only) checkpoints loading without PL ([#3287](https://github.com/PyTorchLightning/pytorch-lightning/pull/3287)) - Fixed `gather_all_tensors` cross GPUs in DDP ([#3319](https://github.com/PyTorchLightning/pytorch-lightning/pull/3319)) - Fixed CometML save dir ([#3419](https://github.com/PyTorchLightning/pytorch-lightning/pull/3419)) - Fixed forward key metrics ([#3467](https://github.com/PyTorchLightning/pytorch-lightning/pull/3467)) - Fixed normalize mode at confusion matrix (replace NaNs with zeros) ([#3465](https://github.com/PyTorchLightning/pytorch-lightning/pull/3465)) - Fixed global step increment in training loop when `training_epoch_end` hook is used ([#3673](https://github.com/PyTorchLightning/pytorch-lightning/pull/3673)) - Fixed dataloader shuffling not getting turned off with `overfit_batches > 0` and `distributed_backend = "ddp"` ([#3534](https://github.com/PyTorchLightning/pytorch-lightning/pull/3534)) - Fixed determinism in `DDPSpawnBackend` when using `seed_everything` in main process ([#3335](https://github.com/PyTorchLightning/pytorch-lightning/pull/3335)) - Fixed `ModelCheckpoint` `period` to actually save every `period` epochs ([#3630](https://github.com/PyTorchLightning/pytorch-lightning/pull/3630)) - Fixed `val_progress_bar` total with `num_sanity_val_steps` ([#3751](https://github.com/PyTorchLightning/pytorch-lightning/pull/3751)) - Fixed Tuner dump: add `current_epoch` to dumped_params ([#3261](https://github.com/PyTorchLightning/pytorch-lightning/pull/3261)) - Fixed `current_epoch` and `global_step` properties mismatch between `Trainer` and `LightningModule` ([#3785](https://github.com/PyTorchLightning/pytorch-lightning/pull/3785)) - Fixed learning rate scheduler for optimizers with internal state ([#3897](https://github.com/PyTorchLightning/pytorch-lightning/pull/3897)) - Fixed `tbptt_reduce_fx` when non-floating tensors are logged ([#3796](https://github.com/PyTorchLightning/pytorch-lightning/pull/3796)) - Fixed model checkpoint frequency ([#3852](https://github.com/PyTorchLightning/pytorch-lightning/pull/3852)) - Fixed logging non-tensor scalar with result breaks subsequent epoch aggregation ([#3855](https://github.com/PyTorchLightning/pytorch-lightning/pull/3855)) - Fixed `TrainerEvaluationLoopMixin` activates `model.train()` at the end ([#3858](https://github.com/PyTorchLightning/pytorch-lightning/pull/3858)) - Fixed `overfit_batches` when using with multiple val/test_dataloaders ([#3857](https://github.com/PyTorchLightning/pytorch-lightning/pull/3857)) - Fixed enables `training_step` to return `None` ([#3862](https://github.com/PyTorchLightning/pytorch-lightning/pull/3862)) - Fixed init nan for checkpointing ([#3863](https://github.com/PyTorchLightning/pytorch-lightning/pull/3863)) - Fixed for `load_from_checkpoint` ([#2776](https://github.com/PyTorchLightning/pytorch-lightning/pull/2776)) - Fixes incorrect `batch_sizes` when Dataloader returns a dict with multiple tensors ([#3668](https://github.com/PyTorchLightning/pytorch-lightning/pull/3668)) - Fixed unexpected signature for `validation_step` ([#3947](https://github.com/PyTorchLightning/pytorch-lightning/pull/3947)) ## [0.9.0] - 2020-08-20 ### Added - Added SyncBN for DDP ([#2801](https://github.com/PyTorchLightning/pytorch-lightning/pull/2801), [#2838](https://github.com/PyTorchLightning/pytorch-lightning/pull/2838)) - Added basic `CSVLogger` ([#2721](https://github.com/PyTorchLightning/pytorch-lightning/pull/2721)) - Added SSIM metrics ([#2671](https://github.com/PyTorchLightning/pytorch-lightning/pull/2671)) - Added BLEU metrics ([#2535](https://github.com/PyTorchLightning/pytorch-lightning/pull/2535)) - Added support to export a model to ONNX format ([#2596](https://github.com/PyTorchLightning/pytorch-lightning/pull/2596)) - Added support for `Trainer(num_sanity_val_steps=-1)` to check all validation data before training ([#2246](https://github.com/PyTorchLightning/pytorch-lightning/pull/2246)) - Added struct. output: * tests for val loop flow ([#2605](https://github.com/PyTorchLightning/pytorch-lightning/pull/2605)) * `EvalResult` support for train and val. loop ([#2615](https://github.com/PyTorchLightning/pytorch-lightning/pull/2615), [#2651](https://github.com/PyTorchLightning/pytorch-lightning/pull/2651)) * weighted average in results obj ([#2930](https://github.com/PyTorchLightning/pytorch-lightning/pull/2930)) * fix result obj DP auto reduce ([#3013](https://github.com/PyTorchLightning/pytorch-lightning/pull/3013)) - Added class `LightningDataModule` ([#2668](https://github.com/PyTorchLightning/pytorch-lightning/pull/2668)) - Added support for PyTorch 1.6 ([#2745](https://github.com/PyTorchLightning/pytorch-lightning/pull/2745)) - Added call DataModule hooks implicitly in trainer ([#2755](https://github.com/PyTorchLightning/pytorch-lightning/pull/2755)) - Added support for Mean in DDP Sync ([#2568](https://github.com/PyTorchLightning/pytorch-lightning/pull/2568)) - Added remaining `sklearn` metrics: `AveragePrecision`, `BalancedAccuracy`, `CohenKappaScore`, `DCG`, `Hamming`, `Hinge`, `Jaccard`, `MeanAbsoluteError`, `MeanSquaredError`, `MeanSquaredLogError`, `MedianAbsoluteError`, `R2Score`, `MeanPoissonDeviance`, `MeanGammaDeviance`, `MeanTweedieDeviance`, `ExplainedVariance` ([#2562](https://github.com/PyTorchLightning/pytorch-lightning/pull/2562)) - Added support for `limit_{mode}_batches (int)` to work with infinite dataloader (IterableDataset) ([#2840](https://github.com/PyTorchLightning/pytorch-lightning/pull/2840)) - Added support returning python scalars in DP ([#1935](https://github.com/PyTorchLightning/pytorch-lightning/pull/1935)) - Added support to Tensorboard logger for OmegaConf `hparams` ([#2846](https://github.com/PyTorchLightning/pytorch-lightning/pull/2846)) - Added tracking of basic states in `Trainer` ([#2541](https://github.com/PyTorchLightning/pytorch-lightning/pull/2541)) - Tracks all outputs including TBPTT and multiple optimizers ([#2890](https://github.com/PyTorchLightning/pytorch-lightning/pull/2890)) - Added GPU Usage Logger ([#2932](https://github.com/PyTorchLightning/pytorch-lightning/pull/2932)) - Added `strict=False` for `load_from_checkpoint` ([#2819](https://github.com/PyTorchLightning/pytorch-lightning/pull/2819)) - Added saving test predictions on multiple GPUs ([#2926](https://github.com/PyTorchLightning/pytorch-lightning/pull/2926)) - Auto log the computational graph for loggers that support this ([#3003](https://github.com/PyTorchLightning/pytorch-lightning/pull/3003)) - Added warning when changing monitor and using results obj ([#3014](https://github.com/PyTorchLightning/pytorch-lightning/pull/3014)) - Added a hook `transfer_batch_to_device` to the `LightningDataModule` ([#3038](https://github.com/PyTorchLightning/pytorch-lightning/pull/3038)) ### Changed - Truncated long version numbers in progress bar ([#2594](https://github.com/PyTorchLightning/pytorch-lightning/pull/2594)) - Enabling val/test loop disabling ([#2692](https://github.com/PyTorchLightning/pytorch-lightning/pull/2692)) - Refactored into `accelerator` module: * GPU training ([#2704](https://github.com/PyTorchLightning/pytorch-lightning/pull/2704)) * TPU training ([#2708](https://github.com/PyTorchLightning/pytorch-lightning/pull/2708)) * DDP(2) backend ([#2796](https://github.com/PyTorchLightning/pytorch-lightning/pull/2796)) * Retrieve last logged val from result by key ([#3049](https://github.com/PyTorchLightning/pytorch-lightning/pull/3049)) - Using `.comet.config` file for `CometLogger` ([#1913](https://github.com/PyTorchLightning/pytorch-lightning/pull/1913)) - Updated hooks arguments - breaking for `setup` and `teardown` ([#2850](https://github.com/PyTorchLightning/pytorch-lightning/pull/2850)) - Using `gfile` to support remote directories ([#2164](https://github.com/PyTorchLightning/pytorch-lightning/pull/2164)) - Moved optimizer creation after device placement for DDP backends ([#2904](https://github.com/PyTorchLightning/pytorch-lighting/pull/2904)) - Support `**DictConfig` for `hparam` serialization ([#2519](https://github.com/PyTorchLightning/pytorch-lightning/pull/2519)) - Removed callback metrics from test results obj ([#2994](https://github.com/PyTorchLightning/pytorch-lightning/pull/2994)) - Re-enabled naming metrics in ckpt name ([#3060](https://github.com/PyTorchLightning/pytorch-lightning/pull/3060)) - Changed progress bar epoch counting to start from 0 ([#3061](https://github.com/PyTorchLightning/pytorch-lightning/pull/3061)) ### Deprecated - Deprecated Trainer attribute `ckpt_path`, which will now be set by `weights_save_path` ([#2681](https://github.com/PyTorchLightning/pytorch-lightning/pull/2681)) ### Removed - Removed deprecated: ([#2760](https://github.com/PyTorchLightning/pytorch-lightning/pull/2760)) * core decorator `data_loader` * Module hook `on_sanity_check_start` and loading `load_from_metrics` * package `pytorch_lightning.logging` * Trainer arguments: `show_progress_bar`, `num_tpu_cores`, `use_amp`, `print_nan_grads` * LR Finder argument `num_accumulation_steps` ### Fixed - Fixed `accumulate_grad_batches` for last batch ([#2853](https://github.com/PyTorchLightning/pytorch-lightning/pull/2853)) - Fixed setup call while testing ([#2624](https://github.com/PyTorchLightning/pytorch-lightning/pull/2624)) - Fixed local rank zero casting ([#2640](https://github.com/PyTorchLightning/pytorch-lightning/pull/2640)) - Fixed single scalar return from training ([#2587](https://github.com/PyTorchLightning/pytorch-lightning/pull/2587)) - Fixed Horovod backend to scale LR schedlers with the optimizer ([#2626](https://github.com/PyTorchLightning/pytorch-lightning/pull/2626)) - Fixed `dtype` and `device` properties not getting updated in submodules ([#2657](https://github.com/PyTorchLightning/pytorch-lightning/pull/2657)) - Fixed `fast_dev_run` to run for all dataloaders ([#2581](https://github.com/PyTorchLightning/pytorch-lightning/pull/2581)) - Fixed `save_dir` in loggers getting ignored by default value of `weights_save_path` when user did not specify `weights_save_path` ([#2681](https://github.com/PyTorchLightning/pytorch-lightning/pull/2681)) - Fixed `weights_save_path` getting ignored when `logger=False` is passed to Trainer ([#2681](https://github.com/PyTorchLightning/pytorch-lightning/pull/2681)) - Fixed TPU multi-core and Float16 ([#2632](https://github.com/PyTorchLightning/pytorch-lightning/pull/2632)) - Fixed test metrics not being logged with `LoggerCollection` ([#2723](https://github.com/PyTorchLightning/pytorch-lightning/pull/2723)) - Fixed data transfer to device when using `torchtext.data.Field` and `include_lengths is True` ([#2689](https://github.com/PyTorchLightning/pytorch-lightning/pull/2689)) - Fixed shuffle argument for distributed sampler ([#2789](https://github.com/PyTorchLightning/pytorch-lightning/pull/2789)) - Fixed logging interval ([#2694](https://github.com/PyTorchLightning/pytorch-lightning/pull/2694)) - Fixed loss value in the progress bar is wrong when `accumulate_grad_batches > 1` ([#2738](https://github.com/PyTorchLightning/pytorch-lightning/pull/2738)) - Fixed correct CWD for ddp sub-processes when using Hydra ([#2719](https://github.com/PyTorchLightning/pytorch-lightning/pull/2719)) - Fixed selecting GPUs using `CUDA_VISIBLE_DEVICES` ([#2739](https://github.com/PyTorchLightning/pytorch-lightning/pull/2739)) - Fixed false `num_classes` warning in metrics ([#2781](https://github.com/PyTorchLightning/pytorch-lightning/pull/2781)) - Fixed shell injection vulnerability in subprocess call ([#2786](https://github.com/PyTorchLightning/pytorch-lightning/pull/2786)) - Fixed LR finder and `hparams` compatibility ([#2821](https://github.com/PyTorchLightning/pytorch-lightning/pull/2821)) - Fixed `ModelCheckpoint` not saving the latest information when `save_last=True` ([#2881](https://github.com/PyTorchLightning/pytorch-lightning/pull/2881)) - Fixed ImageNet example: learning rate scheduler, number of workers and batch size when using DDP ([#2889](https://github.com/PyTorchLightning/pytorch-lightning/pull/2889)) - Fixed apex gradient clipping ([#2829](https://github.com/PyTorchLightning/pytorch-lightning/pull/2829)) - Fixed save apex scaler states ([#2828](https://github.com/PyTorchLightning/pytorch-lightning/pull/2828)) - Fixed a model loading issue with inheritance and variable positional arguments ([#2911](https://github.com/PyTorchLightning/pytorch-lightning/pull/2911)) - Fixed passing `non_blocking=True` when transferring a batch object that does not support it ([#2910](https://github.com/PyTorchLightning/pytorch-lightning/pull/2910)) - Fixed checkpointing to remote file paths ([#2925](https://github.com/PyTorchLightning/pytorch-lightning/pull/2925)) - Fixed adding val step argument to metrics ([#2986](https://github.com/PyTorchLightning/pytorch-lightning/pull/2986)) - Fixed an issue that caused `Trainer.test()` to stall in ddp mode ([#2997](https://github.com/PyTorchLightning/pytorch-lightning/pull/2997)) - Fixed gathering of results with tensors of varying shape ([#3020](https://github.com/PyTorchLightning/pytorch-lightning/pull/3020)) - Fixed batch size auto-scaling feature to set the new value on the correct model attribute ([#3043](https://github.com/PyTorchLightning/pytorch-lightning/pull/3043)) - Fixed automatic batch scaling not working with half precision ([#3045](https://github.com/PyTorchLightning/pytorch-lightning/pull/3045)) - Fixed setting device to root gpu ([#3042](https://github.com/PyTorchLightning/pytorch-lightning/pull/3042)) ## [0.8.5] - 2020-07-09 ### Added - Added a PSNR metric: peak signal-to-noise ratio ([#2483](https://github.com/PyTorchLightning/pytorch-lightning/pull/2483)) - Added functional regression metrics ([#2492](https://github.com/PyTorchLightning/pytorch-lightning/pull/2492)) ### Removed - Removed auto val reduce ([#2462](https://github.com/PyTorchLightning/pytorch-lightning/pull/2462)) ### Fixed - Flattening Wandb Hyperparameters ([#2459](https://github.com/PyTorchLightning/pytorch-lightning/pull/2459)) - Fixed using the same DDP python interpreter and actually running ([#2482](https://github.com/PyTorchLightning/pytorch-lightning/pull/2482)) - Fixed model summary input type conversion for models that have input dtype different from model parameters ([#2510](https://github.com/PyTorchLightning/pytorch-lightning/pull/2510)) - Made `TensorBoardLogger` and `CometLogger` pickleable ([#2518](https://github.com/PyTorchLightning/pytorch-lightning/pull/2518)) - Fixed a problem with `MLflowLogger` creating multiple run folders ([#2502](https://github.com/PyTorchLightning/pytorch-lightning/pull/2502)) - Fixed global_step increment ([#2455](https://github.com/PyTorchLightning/pytorch-lightning/pull/2455)) - Fixed TPU hanging example ([#2488](https://github.com/PyTorchLightning/pytorch-lightning/pull/2488)) - Fixed `argparse` default value bug ([#2526](https://github.com/PyTorchLightning/pytorch-lightning/pull/2526)) - Fixed Dice and IoU to avoid NaN by adding small eps ([#2545](https://github.com/PyTorchLightning/pytorch-lightning/pull/2545)) - Fixed accumulate gradients schedule at epoch 0 (continued) ([#2513](https://github.com/PyTorchLightning/pytorch-lightning/pull/2513)) - Fixed Trainer `.fit()` returning last not best weights in "ddp_spawn" ([#2565](https://github.com/PyTorchLightning/pytorch-lightning/pull/2565)) - Fixed passing (do not pass) TPU weights back on test ([#2566](https://github.com/PyTorchLightning/pytorch-lightning/pull/2566)) - Fixed DDP tests and `.test()` ([#2512](https://github.com/PyTorchLightning/pytorch-lightning/pull/2512), [#2570](https://github.com/PyTorchLightning/pytorch-lightning/pull/2570)) ## [0.8.4] - 2020-07-01 ### Added - Added reduce ddp results on eval ([#2434](https://github.com/PyTorchLightning/pytorch-lightning/pull/2434)) - Added a warning when an `IterableDataset` has `__len__` defined ([#2437](https://github.com/PyTorchLightning/pytorch-lightning/pull/2437)) ### Changed - Enabled no returns from eval ([#2446](https://github.com/PyTorchLightning/pytorch-lightning/pull/2446)) ### Fixed - Fixes train outputs ([#2428](https://github.com/PyTorchLightning/pytorch-lightning/pull/2428)) - Fixes Conda dependencies ([#2412](https://github.com/PyTorchLightning/pytorch-lightning/pull/2412)) - Fixed Apex scaling with decoupled backward ([#2433](https://github.com/PyTorchLightning/pytorch-lightning/pull/2433)) - Fixed crashing or wrong displaying progressbar because of missing ipywidgets ([#2417](https://github.com/PyTorchLightning/pytorch-lightning/pull/2417)) - Fixed TPU saving dir ([fc26078e](https://github.com/PyTorchLightning/pytorch-lightning/commit/fc26078e395f8a001f4c6dd7b3fe7ca202f914a3), [04e68f02](https://github.com/PyTorchLightning/pytorch-lightning/commit/04e68f022fc03dd5f1555ee86dea997d42a448ad)) - Fixed logging on rank 0 only ([#2425](https://github.com/PyTorchLightning/pytorch-lightning/pull/2425)) ## [0.8.3] - 2020-06-29 ### Fixed - Fixed AMP wrong call ([593837e](https://github.com/PyTorchLightning/pytorch-lightning/commit/593837e1da24ff6c942b24ed803fc1496a304609)) - Fixed batch typo ([92d1e75](https://github.com/PyTorchLightning/pytorch-lightning/commit/92d1e75b2638a493d9d21ed5fe00a22093888285)) ## [0.8.2] - 2020-06-28 ### Added - Added TorchText support for moving data to GPU ([#2379](https://github.com/PyTorchLightning/pytorch-lightning/pull/2379)) ### Changed - Changed epoch indexing from 0 instead of 1 ([#2289](https://github.com/PyTorchLightning/pytorch-lightning/pull/2289)) - Refactor Model `backward` ([#2276](https://github.com/PyTorchLightning/pytorch-lightning/pull/2276)) - Refactored `training_batch` + tests to verify correctness ([#2327](https://github.com/PyTorchLightning/pytorch-lightning/pull/2327), [#2328](https://github.com/PyTorchLightning/pytorch-lightning/pull/2328)) - Refactored training loop ([#2336](https://github.com/PyTorchLightning/pytorch-lightning/pull/2336)) - Made optimization steps for hooks ([#2363](https://github.com/PyTorchLightning/pytorch-lightning/pull/2363)) - Changed default apex level to 'O2' ([#2362](https://github.com/PyTorchLightning/pytorch-lightning/pull/2362)) ### Removed - Moved `TrainsLogger` to Bolts ([#2384](https://github.com/PyTorchLightning/pytorch-lightning/pull/2384)) ### Fixed - Fixed parsing TPU arguments and TPU tests ([#2094](https://github.com/PyTorchLightning/pytorch-lightning/pull/2094)) - Fixed number batches in case of multiple dataloaders and `limit_{*}_batches` ([#1920](https://github.com/PyTorchLightning/pytorch-lightning/pull/1920), [#2226](https://github.com/PyTorchLightning/pytorch-lightning/pull/2226)) - Fixed an issue with forward hooks not being removed after model summary ([#2298](https://github.com/PyTorchLightning/pytorch-lightning/pull/2298)) - Fix for `load_from_checkpoint()` not working with absolute path on Windows ([#2294](https://github.com/PyTorchLightning/pytorch-lightning/pull/2294)) - Fixed an issue how _has_len handles `NotImplementedError` e.g. raised by `torchtext.data.Iterator` ([#2293](https://github.com/PyTorchLightning/pytorch-lightning/pull/2293)), ([#2307](https://github.com/PyTorchLightning/pytorch-lightning/pull/2307)) - Fixed `average_precision` metric ([#2319](https://github.com/PyTorchLightning/pytorch-lightning/pull/2319)) - Fixed ROC metric for CUDA tensors ([#2304](https://github.com/PyTorchLightning/pytorch-lightning/pull/2304)) - Fixed lost compatibility with custom datatypes implementing `.to` ([#2335](https://github.com/PyTorchLightning/pytorch-lightning/pull/2335)) - Fixed loading model with kwargs ([#2387](https://github.com/PyTorchLightning/pytorch-lightning/pull/2387)) - Fixed sum(0) for `trainer.num_val_batches` ([#2268](https://github.com/PyTorchLightning/pytorch-lightning/pull/2268)) - Fixed checking if the parameters are a `DictConfig` Object ([#2216](https://github.com/PyTorchLightning/pytorch-lightning/pull/2216)) - Fixed SLURM weights saving ([#2341](https://github.com/PyTorchLightning/pytorch-lightning/pull/2341)) - Fixed swaps LR scheduler order ([#2356](https://github.com/PyTorchLightning/pytorch-lightning/pull/2356)) - Fixed adding tensorboard `hparams` logging test ([#2342](https://github.com/PyTorchLightning/pytorch-lightning/pull/2342)) - Fixed use model ref for tear down ([#2360](https://github.com/PyTorchLightning/pytorch-lightning/pull/2360)) - Fixed logger crash on DDP ([#2388](https://github.com/PyTorchLightning/pytorch-lightning/pull/2388)) - Fixed several issues with early stopping and checkpoint callbacks ([#1504](https://github.com/PyTorchLightning/pytorch-lightning/pull/1504), [#2391](https://github.com/PyTorchLightning/pytorch-lightning/pull/2391)) - Fixed loading past checkpoints from v0.7.x ([#2405](https://github.com/PyTorchLightning/pytorch-lightning/pull/2405)) - Fixed loading model without arguments ([#2403](https://github.com/PyTorchLightning/pytorch-lightning/pull/2403)) - Fixed Windows compatibility issue ([#2358](https://github.com/PyTorchLightning/pytorch-lightning/pull/2358)) ## [0.8.1] - 2020-06-19 ### Fixed - Fixed the `load_from_checkpoint` path detected as URL bug ([#2244](https://github.com/PyTorchLightning/pytorch-lightning/pull/2244)) - Fixed hooks - added barrier ([#2245](https://github.com/PyTorchLightning/pytorch-lightning/pull/2245), [#2257](https://github.com/PyTorchLightning/pytorch-lightning/pull/2257), [#2260](https://github.com/PyTorchLightning/pytorch-lightning/pull/220)) - Fixed `hparams` - remove frame inspection on `self.hparams` ([#2253](https://github.com/PyTorchLightning/pytorch-lightning/pull/2253)) - Fixed setup and on fit calls ([#2252](https://github.com/PyTorchLightning/pytorch-lightning/pull/2252)) - Fixed GPU template ([#2255](https://github.com/PyTorchLightning/pytorch-lightning/pull/2255)) ## [0.8.0] - 2020-06-18 ### Added - Added `overfit_batches`, `limit_{val|test}_batches` flags (overfit now uses training set for all three) ([#2213](https://github.com/PyTorchLightning/pytorch-lightning/pull/2213)) - Added metrics * Base classes ([#1326](https://github.com/PyTorchLightning/pytorch-lightning/pull/1326), [#1877](https://github.com/PyTorchLightning/pytorch-lightning/pull/1877)) * Sklearn metrics classes ([#1327](https://github.com/PyTorchLightning/pytorch-lightning/pull/1327)) * Native torch metrics ([#1488](https://github.com/PyTorchLightning/pytorch-lightning/pull/1488), [#2062](https://github.com/PyTorchLightning/pytorch-lightning/pull/2062)) * docs for all Metrics ([#2184](https://github.com/PyTorchLightning/pytorch-lightning/pull/2184), [#2209](https://github.com/PyTorchLightning/pytorch-lightning/pull/2209)) * Regression metrics ([#2221](https://github.com/PyTorchLightning/pytorch-lightning/pull/2221)) - Allow dataloaders without sampler field present ([#1907](https://github.com/PyTorchLightning/pytorch-lightning/pull/1907)) - Added option `save_last` to save the model at the end of every epoch in `ModelCheckpoint` ([#1908](https://github.com/PyTorchLightning/pytorch-lightning/pull/1908)) - Early stopping checks `on_validation_end` ([#1458](https://github.com/PyTorchLightning/pytorch-lightning/pull/1458)) - Speed up single-core TPU training by loading data using `ParallelLoader` ([#2033](https://github.com/PyTorchLightning/pytorch-lightning/pull/2033)) - Added a model hook `transfer_batch_to_device` that enables moving custom data structures to the target device ([#1756](https://github.com/PyTorchLightning/pytorch-lightning/pull/1756)) - Added [black](https://black.readthedocs.io/en/stable/) formatter for the code with code-checker on pull ([#1610](https://github.com/PyTorchLightning/pytorch-lightning/pull/1610)) - Added back the slow spawn ddp implementation as `ddp_spawn` ([#2115](https://github.com/PyTorchLightning/pytorch-lightning/pull/2115)) - Added loading checkpoints from URLs ([#1667](https://github.com/PyTorchLightning/pytorch-lightning/pull/1667)) - Added a callback method `on_keyboard_interrupt` for handling KeyboardInterrupt events during training ([#2134](https://github.com/PyTorchLightning/pytorch-lightning/pull/2134)) - Added a decorator `auto_move_data` that moves data to the correct device when using the LightningModule for inference ([#1905](https://github.com/PyTorchLightning/pytorch-lightning/pull/1905)) - Added `ckpt_path` option to `LightningModule.test(...)` to load particular checkpoint ([#2190](https://github.com/PyTorchLightning/pytorch-lightning/pull/2190)) - Added `setup` and `teardown` hooks for model ([#2229](https://github.com/PyTorchLightning/pytorch-lightning/pull/2229)) ### Changed - Allow user to select individual TPU core to train on ([#1729](https://github.com/PyTorchLightning/pytorch-lightning/pull/1729)) - Removed non-finite values from loss in `LRFinder` ([#1862](https://github.com/PyTorchLightning/pytorch-lightning/pull/1862)) - Allow passing model hyperparameters as complete kwarg list ([#1896](https://github.com/PyTorchLightning/pytorch-lightning/pull/1896)) - Renamed `ModelCheckpoint`'s attributes `best` to `best_model_score` and `kth_best_model` to `kth_best_model_path` ([#1799](https://github.com/PyTorchLightning/pytorch-lightning/pull/1799)) - Re-Enable Logger's `ImportError`s ([#1938](https://github.com/PyTorchLightning/pytorch-lightning/pull/1938)) - Changed the default value of the Trainer argument `weights_summary` from `full` to `top` ([#2029](https://github.com/PyTorchLightning/pytorch-lightning/pull/2029)) - Raise an error when lightning replaces an existing sampler ([#2020](https://github.com/PyTorchLightning/pytorch-lightning/pull/2020)) - Enabled `prepare_data` from correct processes - clarify local vs global rank ([#2166](https://github.com/PyTorchLightning/pytorch-lightning/pull/2166)) - Remove explicit flush from tensorboard logger ([#2126](https://github.com/PyTorchLightning/pytorch-lightning/pull/2126)) - Changed epoch indexing from 1 instead of 0 ([#2206](https://github.com/PyTorchLightning/pytorch-lightning/pull/2206)) ### Deprecated - Deprecated flags: ([#2213](https://github.com/PyTorchLightning/pytorch-lightning/pull/2213)) * `overfit_pct` in favour of `overfit_batches` * `val_percent_check` in favour of `limit_val_batches` * `test_percent_check` in favour of `limit_test_batches` - Deprecated `ModelCheckpoint`'s attributes `best` and `kth_best_model` ([#1799](https://github.com/PyTorchLightning/pytorch-lightning/pull/1799)) - Dropped official support/testing for older PyTorch versions <1.3 ([#1917](https://github.com/PyTorchLightning/pytorch-lightning/pull/1917)) - Deprecated Trainer `proc_rank` in favour of `global_rank` ([#2166](https://github.com/PyTorchLightning/pytorch-lightning/pull/2166), [#2269](https://github.com/PyTorchLightning/pytorch-lightning/pull/2269)) ### Removed - Removed unintended Trainer argument `progress_bar_callback`, the callback should be passed in by `Trainer(callbacks=[...])` instead ([#1855](https://github.com/PyTorchLightning/pytorch-lightning/pull/1855)) - Removed obsolete `self._device` in Trainer ([#1849](https://github.com/PyTorchLightning/pytorch-lightning/pull/1849)) - Removed deprecated API ([#2073](https://github.com/PyTorchLightning/pytorch-lightning/pull/2073)) * Packages: `pytorch_lightning.pt_overrides`, `pytorch_lightning.root_module` * Modules: `pytorch_lightning.logging.comet_logger`, `pytorch_lightning.logging.mlflow_logger`, `pytorch_lightning.logging.test_tube_logger`, `pytorch_lightning.overrides.override_data_parallel`, `pytorch_lightning.core.model_saving`, `pytorch_lightning.core.root_module` * Trainer arguments: `add_row_log_interval`, `default_save_path`, `gradient_clip`, `nb_gpu_nodes`, `max_nb_epochs`, `min_nb_epochs`, `nb_sanity_val_steps` * Trainer attributes: `nb_gpu_nodes`, `num_gpu_nodes`, `gradient_clip`, `max_nb_epochs`, `min_nb_epochs`, `nb_sanity_val_steps`, `default_save_path`, `tng_tqdm_dic` ### Fixed - Run graceful training teardown on interpreter exit ([#1631](https://github.com/PyTorchLightning/pytorch-lightning/pull/1631)) - Fixed user warning when apex was used together with learning rate schedulers ([#1873](https://github.com/PyTorchLightning/pytorch-lightning/pull/1873)) - Fixed multiple calls of `EarlyStopping` callback ([#1863](https://github.com/PyTorchLightning/pytorch-lightning/pull/1863)) - Fixed an issue with `Trainer.from_argparse_args` when passing in unknown Trainer args ([#1932](https://github.com/PyTorchLightning/pytorch-lightning/pull/1932)) - Fixed bug related to logger not being reset correctly for model after tuner algorithms ([#1933](https://github.com/PyTorchLightning/pytorch-lightning/pull/1933)) - Fixed root node resolution for SLURM cluster with dash in host name ([#1954](https://github.com/PyTorchLightning/pytorch-lightning/pull/1954)) - Fixed `LearningRateLogger` in multi-scheduler setting ([#1944](https://github.com/PyTorchLightning/pytorch-lightning/pull/1944)) - Fixed test configuration check and testing ([#1804](https://github.com/PyTorchLightning/pytorch-lightning/pull/1804)) - Fixed an issue with Trainer constructor silently ignoring unknown/misspelled arguments ([#1820](https://github.com/PyTorchLightning/pytorch-lightning/pull/1820)) - Fixed `save_weights_only` in ModelCheckpoint ([#1780](https://github.com/PyTorchLightning/pytorch-lightning/pull/1780)) - Allow use of same `WandbLogger` instance for multiple training loops ([#2055](https://github.com/PyTorchLightning/pytorch-lightning/pull/2055)) - Fixed an issue with `_auto_collect_arguments` collecting local variables that are not constructor arguments and not working for signatures that have the instance not named `self` ([#2048](https://github.com/PyTorchLightning/pytorch-lightning/pull/2048)) - Fixed mistake in parameters' grad norm tracking ([#2012](https://github.com/PyTorchLightning/pytorch-lightning/pull/2012)) - Fixed CPU and hanging GPU crash ([#2118](https://github.com/PyTorchLightning/pytorch-lightning/pull/2118)) - Fixed an issue with the model summary and `example_input_array` depending on a specific ordering of the submodules in a LightningModule ([#1773](https://github.com/PyTorchLightning/pytorch-lightning/pull/1773)) - Fixed Tpu logging ([#2230](https://github.com/PyTorchLightning/pytorch-lightning/pull/2230)) - Fixed Pid port + duplicate `rank_zero` logging ([#2140](https://github.com/PyTorchLightning/pytorch-lightning/pull/2140), [#2231](https://github.com/PyTorchLightning/pytorch-lightning/pull/2231)) ## [0.7.6] - 2020-05-16 ### Added - Added callback for logging learning rates ([#1498](https://github.com/PyTorchLightning/pytorch-lightning/pull/1498)) - Added transfer learning example (for a binary classification task in computer vision) ([#1564](https://github.com/PyTorchLightning/pytorch-lightning/pull/1564)) - Added type hints in `Trainer.fit()` and `Trainer.test()` to reflect that also a list of dataloaders can be passed in ([#1723](https://github.com/PyTorchLightning/pytorch-lightning/pull/1723)). - Added auto scaling of batch size ([#1638](https://github.com/PyTorchLightning/pytorch-lightning/pull/1638)) - The progress bar metrics now also get updated in `training_epoch_end` ([#1724](https://github.com/PyTorchLightning/pytorch-lightning/pull/1724)) - Enable `NeptuneLogger` to work with `distributed_backend=ddp` ([#1753](https://github.com/PyTorchLightning/pytorch-lightning/pull/1753)) - Added option to provide seed to random generators to ensure reproducibility ([#1572](https://github.com/PyTorchLightning/pytorch-lightning/pull/1572)) - Added override for hparams in `load_from_ckpt` ([#1797](https://github.com/PyTorchLightning/pytorch-lightning/pull/1797)) - Added support multi-node distributed execution under `torchelastic` ([#1811](https://github.com/PyTorchLightning/pytorch-lightning/pull/1811), [#1818](https://github.com/PyTorchLightning/pytorch-lightning/pull/1818)) - Added using `store_true` for bool args ([#1822](https://github.com/PyTorchLightning/pytorch-lightning/pull/1822), [#1842](https://github.com/PyTorchLightning/pytorch-lightning/pull/1842)) - Added dummy logger for internally disabling logging for some features ([#1836](https://github.com/PyTorchLightning/pytorch-lightning/pull/1836)) ### Changed - Enable `non-blocking` for device transfers to GPU ([#1843](https://github.com/PyTorchLightning/pytorch-lightning/pull/1843)) - Replace mata_tags.csv with hparams.yaml ([#1271](https://github.com/PyTorchLightning/pytorch-lightning/pull/1271)) - Reduction when `batch_size < num_gpus` ([#1609](https://github.com/PyTorchLightning/pytorch-lightning/pull/1609)) - Updated LightningTemplateModel to look more like Colab example ([#1577](https://github.com/PyTorchLightning/pytorch-lightning/pull/1577)) - Don't convert `namedtuple` to `tuple` when transferring the batch to target device ([#1589](https://github.com/PyTorchLightning/pytorch-lightning/pull/1589)) - Allow passing hparams as keyword argument to LightningModule when loading from checkpoint ([#1639](https://github.com/PyTorchLightning/pytorch-lightning/pull/1639)) - Args should come after the last positional argument ([#1807](https://github.com/PyTorchLightning/pytorch-lightning/pull/1807)) - Made ddp the default if no backend specified with multiple GPUs ([#1789](https://github.com/PyTorchLightning/pytorch-lightning/pull/1789)) ### Deprecated - Deprecated `tags_csv` in favor of `hparams_file` ([#1271](https://github.com/PyTorchLightning/pytorch-lightning/pull/1271)) ### Fixed - Fixed broken link in PR template ([#1675](https://github.com/PyTorchLightning/pytorch-lightning/pull/1675)) - Fixed ModelCheckpoint not None checking filepath ([#1654](https://github.com/PyTorchLightning/pytorch-lightning/pull/1654)) - Trainer now calls `on_load_checkpoint()` when resuming from a checkpoint ([#1666](https://github.com/PyTorchLightning/pytorch-lightning/pull/1666)) - Fixed sampler logic for ddp with iterable dataset ([#1734](https://github.com/PyTorchLightning/pytorch-lightning/pull/1734)) - Fixed `_reset_eval_dataloader()` for IterableDataset ([#1560](https://github.com/PyTorchLightning/pytorch-lightning/pull/1560)) - Fixed Horovod distributed backend to set the `root_gpu` property ([#1669](https://github.com/PyTorchLightning/pytorch-lightning/pull/1669)) - Fixed wandb logger `global_step` affects other loggers ([#1492](https://github.com/PyTorchLightning/pytorch-lightning/pull/1492)) - Fixed disabling progress bar on non-zero ranks using Horovod backend ([#1709](https://github.com/PyTorchLightning/pytorch-lightning/pull/1709)) - Fixed bugs that prevent lr finder to be used together with early stopping and validation dataloaders ([#1676](https://github.com/PyTorchLightning/pytorch-lightning/pull/1676)) - Fixed a bug in Trainer that prepended the checkpoint path with `version_` when it shouldn't ([#1748](https://github.com/PyTorchLightning/pytorch-lightning/pull/1748)) - Fixed lr key name in case of param groups in LearningRateLogger ([#1719](https://github.com/PyTorchLightning/pytorch-lightning/pull/1719)) - Fixed accumulation parameter and suggestion method for learning rate finder ([#1801](https://github.com/PyTorchLightning/pytorch-lightning/pull/1801)) - Fixed num processes wasn't being set properly and auto sampler was ddp failing ([#1819](https://github.com/PyTorchLightning/pytorch-lightning/pull/1819)) - Fixed bugs in semantic segmentation example ([#1824](https://github.com/PyTorchLightning/pytorch-lightning/pull/1824)) - Fixed saving native AMP scaler state ([#1777](https://github.com/PyTorchLightning/pytorch-lightning/pull/1777)) - Fixed native amp + ddp ([#1788](https://github.com/PyTorchLightning/pytorch-lightning/pull/1788)) - Fixed `hparam` logging with metrics ([#1647](https://github.com/PyTorchLightning/pytorch-lightning/pull/1647)) ## [0.7.5] - 2020-04-27 ### Changed - Allow logging of metrics together with `hparams` ([#1630](https://github.com/PyTorchLightning/pytorch-lightning/pull/1630)) ### Removed - Removed Warning from trainer loop ([#1634](https://github.com/PyTorchLightning/pytorch-lightning/pull/1634)) ### Fixed - Fixed ModelCheckpoint not being fixable ([#1632](https://github.com/PyTorchLightning/pytorch-lightning/pull/1632)) - Fixed CPU DDP breaking change and DDP change ([#1635](https://github.com/PyTorchLightning/pytorch-lightning/pull/1635)) - Tested pickling ([#1636](https://github.com/PyTorchLightning/pytorch-lightning/pull/1636)) ## [0.7.4] - 2020-04-26 ### Added - Added flag `replace_sampler_ddp` to manually disable sampler replacement in DDP ([#1513](https://github.com/PyTorchLightning/pytorch-lightning/pull/1513)) - Added `auto_select_gpus` flag to trainer that enables automatic selection of available GPUs on exclusive mode systems. - Added learning rate finder ([#1347](https://github.com/PyTorchLightning/pytorch-lightning/pull/1347)) - Added support for DDP mode in clusters without SLURM ([#1387](https://github.com/PyTorchLightning/pytorch-lightning/pull/1387)) - Added `test_dataloaders` parameter to `Trainer.test()` ([#1434](https://github.com/PyTorchLightning/pytorch-lightning/pull/1434)) - Added `terminate_on_nan` flag to trainer that performs a NaN check with each training iteration when set to `True` ([#1475](https://github.com/PyTorchLightning/pytorch-lightning/pull/1475)) - Added speed parity tests (max 1 sec difference per epoch)([#1482](https://github.com/PyTorchLightning/pytorch-lightning/pull/1482)) - Added `ddp_cpu` backend for testing ddp without GPUs ([#1158](https://github.com/PyTorchLightning/pytorch-lightning/pull/1158)) - Added [Horovod](http://horovod.ai) support as a distributed backend `Trainer(distributed_backend='horovod')` ([#1529](https://github.com/PyTorchLightning/pytorch-lightning/pull/1529)) - Added support for 8 core distributed training on Kaggle TPU's ([#1568](https://github.com/PyTorchLightning/pytorch-lightning/pull/1568)) - Added support for native AMP ([#1561](https://github.com/PyTorchLightning/pytorch-lightning/pull/1561), [#1580](https://github.com/PyTorchLightning/pytorch-lightning/pull/1580)) ### Changed - Changed the default behaviour to no longer include a NaN check with each training iteration ([#1475](https://github.com/PyTorchLightning/pytorch-lightning/pull/1475)) - Decoupled the progress bar from trainer` it is a callback now and can be customized or even be replaced entirely ([#1450](https://github.com/PyTorchLightning/pytorch-lightning/pull/1450)). - Changed lr schedule step interval behavior to update every backwards pass instead of every forwards pass ([#1477](https://github.com/PyTorchLightning/pytorch-lightning/pull/1477)) - Defines shared proc. rank, remove rank from instances (e.g. loggers) ([#1408](https://github.com/PyTorchLightning/pytorch-lightning/pull/1408)) - Updated semantic segmentation example with custom U-Net and logging ([#1371](https://github.com/PyTorchLightning/pytorch-lightning/pull/1371)) - Disabled val and test shuffling ([#1600](https://github.com/PyTorchLightning/pytorch-lightning/pull/1600)) ### Deprecated - Deprecated `training_tqdm_dict` in favor of `progress_bar_dict` ([#1450](https://github.com/PyTorchLightning/pytorch-lightning/pull/1450)). ### Removed - Removed `test_dataloaders` parameter from `Trainer.fit()` ([#1434](https://github.com/PyTorchLightning/pytorch-lightning/pull/1434)) ### Fixed - Added the possibility to pass nested metrics dictionaries to loggers ([#1582](https://github.com/PyTorchLightning/pytorch-lightning/pull/1582)) - Fixed memory leak from opt return ([#1528](https://github.com/PyTorchLightning/pytorch-lightning/pull/1528)) - Fixed saving checkpoint before deleting old ones ([#1453](https://github.com/PyTorchLightning/pytorch-lightning/pull/1453)) - Fixed loggers - flushing last logged metrics even before continue, e.g. `trainer.test()` results ([#1459](https://github.com/PyTorchLightning/pytorch-lightning/pull/1459)) - Fixed optimizer configuration when `configure_optimizers` returns dict without `lr_scheduler` ([#1443](https://github.com/PyTorchLightning/pytorch-lightning/pull/1443)) - Fixed `LightningModule` - mixing hparams and arguments in `LightningModule.__init__()` crashes load_from_checkpoint() ([#1505](https://github.com/PyTorchLightning/pytorch-lightning/pull/1505)) - Added a missing call to the `on_before_zero_grad` model hook ([#1493](https://github.com/PyTorchLightning/pytorch-lightning/pull/1493)). - Allow use of sweeps with `WandbLogger` ([#1512](https://github.com/PyTorchLightning/pytorch-lightning/pull/1512)) - Fixed a bug that caused the `callbacks` Trainer argument to reference a global variable ([#1534](https://github.com/PyTorchLightning/pytorch-lightning/pull/1534)). - Fixed a bug that set all boolean CLI arguments from `Trainer.add_argparse_args` always to True ([#1571](https://github.com/PyTorchLightning/pytorch-lightning/pull/1571)) - Fixed do not copy the batch when training on a single GPU ([#1576](https://github.com/PyTorchLightning/pytorch-lightning/pull/1576), [#1579](https://github.com/PyTorchLightning/pytorch-lightning/pull/1579)) - Fixed soft checkpoint removing on DDP ([#1408](https://github.com/PyTorchLightning/pytorch-lightning/pull/1408)) - Fixed automatic parser bug ([#1585](https://github.com/PyTorchLightning/pytorch-lightning/pull/1585)) - Fixed bool conversion from string ([#1606](https://github.com/PyTorchLightning/pytorch-lightning/pull/1606)) ## [0.7.3] - 2020-04-09 ### Added - Added `rank_zero_warn` for warning only in rank 0 ([#1428](https://github.com/PyTorchLightning/pytorch-lightning/pull/1428)) ### Fixed - Fixed default `DistributedSampler` for DDP training ([#1425](https://github.com/PyTorchLightning/pytorch-lightning/pull/1425)) - Fixed workers warning not on windows ([#1430](https://github.com/PyTorchLightning/pytorch-lightning/pull/1430)) - Fixed returning tuple from `run_training_batch` ([#1431](https://github.com/PyTorchLightning/pytorch-lightning/pull/1431)) - Fixed gradient clipping ([#1438](https://github.com/PyTorchLightning/pytorch-lightning/pull/1438)) - Fixed pretty print ([#1441](https://github.com/PyTorchLightning/pytorch-lightning/pull/1441)) ## [0.7.2] - 2020-04-07 ### Added - Added same step loggers' metrics aggregation ([#1278](https://github.com/PyTorchLightning/pytorch-lightning/pull/1278)) - Added parity test between a vanilla MNIST model and lightning model ([#1284](https://github.com/PyTorchLightning/pytorch-lightning/pull/1284)) - Added parity test between a vanilla RNN model and lightning model ([#1351](https://github.com/PyTorchLightning/pytorch-lightning/pull/1351)) - Added Reinforcement Learning - Deep Q-network (DQN) lightning example ([#1232](https://github.com/PyTorchLightning/pytorch-lightning/pull/1232)) - Added support for hierarchical `dict` ([#1152](https://github.com/PyTorchLightning/pytorch-lightning/pull/1152)) - Added `TrainsLogger` class ([#1122](https://github.com/PyTorchLightning/pytorch-lightning/pull/1122)) - Added type hints to `pytorch_lightning.core` ([#946](https://github.com/PyTorchLightning/pytorch-lightning/pull/946)) - Added support for `IterableDataset` in validation and testing ([#1104](https://github.com/PyTorchLightning/pytorch-lightning/pull/1104)) - Added support for non-primitive types in `hparams` for `TensorboardLogger` ([#1130](https://github.com/PyTorchLightning/pytorch-lightning/pull/1130)) - Added a check that stops the training when loss or weights contain `NaN` or `inf` values. ([#1097](https://github.com/PyTorchLightning/pytorch-lightning/pull/1097)) - Added support for `IterableDataset` when `val_check_interval=1.0` (default), this will trigger validation at the end of each epoch. ([#1283](https://github.com/PyTorchLightning/pytorch-lightning/pull/1283)) - Added `summary` method to Profilers. ([#1259](https://github.com/PyTorchLightning/pytorch-lightning/pull/1259)) - Added informative errors if user defined dataloader has zero length ([#1280](https://github.com/PyTorchLightning/pytorch-lightning/pull/1280)) - Added testing for python 3.8 ([#915](https://github.com/PyTorchLightning/pytorch-lightning/pull/915)) - Added model configuration checking ([#1199](https://github.com/PyTorchLightning/pytorch-lightning/pull/1199)) - Added support for optimizer frequencies through `LightningModule.configure_optimizers()` ([#1269](https://github.com/PyTorchLightning/pytorch-lightning/pull/1269)) - Added option to run without an optimizer by returning `None` from `configure_optimizers`. ([#1279](https://github.com/PyTorchLightning/pytorch-lightning/pull/1279)) - Added a warning when the number of data loader workers is small. ([#1378](https://github.com/PyTorchLightning/pytorch-lightning/pull/1378)) ### Changed - Changed (renamed and refatored) `TensorRunningMean` -> `TensorRunningAccum`: running accumulations were generalized. ([#1278](https://github.com/PyTorchLightning/pytorch-lightning/pull/1278)) - Changed `progress_bar_refresh_rate` trainer flag to disable progress bar when set to 0. ([#1108](https://github.com/PyTorchLightning/pytorch-lightning/pull/1108)) - Enhanced `load_from_checkpoint` to also forward params to the model ([#1307](https://github.com/PyTorchLightning/pytorch-lightning/pull/1307)) - Updated references to `self.forward()` to instead use the `__call__` interface. ([#1211](https://github.com/PyTorchLightning/pytorch-lightning/pull/1211)) - Changed default behaviour of `configure_optimizers` to use no optimizer rather than Adam. ([#1279](https://github.com/PyTorchLightning/pytorch-lightning/pull/1279)) - Allow to upload models on W&B ([#1339](https://github.com/PyTorchLightning/pytorch-lightning/pull/1339)) - On DP and DDP2 unsqueeze is automated now ([#1319](https://github.com/PyTorchLightning/pytorch-lightning/pull/1319)) - Did not always create a DataLoader during reinstantiation, but the same type as before (if subclass of DataLoader) ([#1346](https://github.com/PyTorchLightning/pytorch-lightning/pull/1346)) - Did not interfere with a default sampler ([#1318](https://github.com/PyTorchLightning/pytorch-lightning/pull/1318)) - Remove default Adam optimizer ([#1317](https://github.com/PyTorchLightning/pytorch-lightning/pull/1317)) - Give warnings for unimplemented required lightning methods ([#1317](https://github.com/PyTorchLightning/pytorch-lightning/pull/1317)) - Made `evaluate` method private >> `Trainer._evaluate(...)`. ([#1260](https://github.com/PyTorchLightning/pytorch-lightning/pull/1260)) - Simplify the PL examples structure (shallower and more readable) ([#1247](https://github.com/PyTorchLightning/pytorch-lightning/pull/1247)) - Changed min max gpu memory to be on their own plots ([#1358](https://github.com/PyTorchLightning/pytorch-lightning/pull/1358)) - Remove `.item` which causes sync issues ([#1254](https://github.com/PyTorchLightning/pytorch-lightning/pull/1254)) - Changed smoothing in TQDM to decrease variability of time remaining between training / eval ([#1194](https://github.com/PyTorchLightning/pytorch-lightning/pull/1194)) - Change default logger to dedicated one ([#1064](https://github.com/PyTorchLightning/pytorch-lightning/pull/1064)) ### Deprecated - Deprecated Trainer argument `print_nan_grads` ([#1097](https://github.com/PyTorchLightning/pytorch-lightning/pull/1097)) - Deprecated Trainer argument `show_progress_bar` ([#1108](https://github.com/PyTorchLightning/pytorch-lightning/pull/1108)) ### Removed - Removed test for no test dataloader in .fit ([#1495](https://github.com/PyTorchLightning/pytorch-lightning/pull/1495)) - Removed duplicated module `pytorch_lightning.utilities.arg_parse` for loading CLI arguments ([#1167](https://github.com/PyTorchLightning/pytorch-lightning/pull/1167)) - Removed wandb logger's `finalize` method ([#1193](https://github.com/PyTorchLightning/pytorch-lightning/pull/1193)) - Dropped `torchvision` dependency in tests and added own MNIST dataset class instead ([#986](https://github.com/PyTorchLightning/pytorch-lightning/pull/986)) ### Fixed - Fixed `model_checkpoint` when saving all models ([#1359](https://github.com/PyTorchLightning/pytorch-lightning/pull/1359)) - `Trainer.add_argparse_args` classmethod fixed. Now it adds a type for the arguments ([#1147](https://github.com/PyTorchLightning/pytorch-lightning/pull/1147)) - Fixed bug related to type checking of `ReduceLROnPlateau` lr schedulers([#1126](https://github.com/PyTorchLightning/pytorch-lightning/pull/1126)) - Fixed a bug to ensure lightning checkpoints to be backward compatible ([#1132](https://github.com/PyTorchLightning/pytorch-lightning/pull/1132)) - Fixed a bug that created an extra dataloader with active `reload_dataloaders_every_epoch` ([#1196](https://github.com/PyTorchLightning/pytorch-lightning/pull/1196)) - Fixed all warnings and errors in the docs build process ([#1191](https://github.com/PyTorchLightning/pytorch-lightning/pull/1191)) - Fixed an issue where `val_percent_check=0` would not disable validation ([#1251](https://github.com/PyTorchLightning/pytorch-lightning/pull/1251)) - Fixed average of incomplete `TensorRunningMean` ([#1309](https://github.com/PyTorchLightning/pytorch-lightning/pull/1309)) - Fixed `WandbLogger.watch` with `wandb.init()` ([#1311](https://github.com/PyTorchLightning/pytorch-lightning/pull/1311)) - Fixed an issue with early stopping that would prevent it from monitoring training metrics when validation is disabled / not implemented ([#1235](https://github.com/PyTorchLightning/pytorch-lightning/pull/1235)). - Fixed a bug that would cause `trainer.test()` to run on the validation set when overloading `validation_epoch_end` and `test_end` ([#1353](https://github.com/PyTorchLightning/pytorch-lightning/pull/1353)) - Fixed `WandbLogger.watch` - use of the watch method without importing `wandb` ([#1311](https://github.com/PyTorchLightning/pytorch-lightning/pull/1311)) - Fixed `WandbLogger` to be used with 'ddp' - allow reinits in sub-processes ([#1149](https://github.com/PyTorchLightning/pytorch-lightning/pull/1149), [#1360](https://github.com/PyTorchLightning/pytorch-lightning/pull/1360)) - Made `training_epoch_end` behave like `validation_epoch_end` ([#1357](https://github.com/PyTorchLightning/pytorch-lightning/pull/1357)) - Fixed `fast_dev_run` running validation twice ([#1365](https://github.com/PyTorchLightning/pytorch-lightning/pull/1365)) - Fixed pickle error from quick patch `__code__` ([#1352](https://github.com/PyTorchLightning/pytorch-lightning/pull/1352)) - Fixed memory leak on GPU0 ([#1094](https://github.com/PyTorchLightning/pytorch-lightning/pull/1094), [#1349](https://github.com/PyTorchLightning/pytorch-lightning/pull/1349)) - Fixed checkpointing interval ([#1272](https://github.com/PyTorchLightning/pytorch-lightning/pull/1272)) - Fixed validation and training loops run the partial dataset ([#1192](https://github.com/PyTorchLightning/pytorch-lightning/pull/1192)) - Fixed running `on_validation_end` only on main process in DDP ([#1125](https://github.com/PyTorchLightning/pytorch-lightning/pull/1125)) - Fixed `load_spawn_weights` only in proc rank 0 ([#1385](https://github.com/PyTorchLightning/pytorch-lightning/pull/1385)) - Fixes using deprecated `use_amp` attribute ([#1145](https://github.com/PyTorchLightning/pytorch-lightning/pull/1145)) - Fixed Tensorboard logger error: lightning_logs directory not exists in multi-node DDP on nodes with rank != 0 ([#1377](https://github.com/PyTorchLightning/pytorch-lightning/pull/1377)) - Fixed `Unimplemented backend XLA` error on TPU ([#1387](https://github.com/PyTorchLightning/pytorch-lightning/pull/1387)) ## [0.7.1] - 2020-03-07 ### Fixed - Fixes `print` issues and `data_loader` ([#1080](https://github.com/PyTorchLightning/pytorch-lightning/pull/1080)) ## [0.7.0] - 2020-03-06 ### Added - Added automatic sampler setup. Depending on DDP or TPU, lightning configures the sampler correctly (user needs to do nothing) ([#926](https://github.com/PyTorchLightning/pytorch-lightning/pull/926)) - Added `reload_dataloaders_every_epoch=False` flag for trainer. Some users require reloading data every epoch ([#926](https://github.com/PyTorchLightning/pytorch-lightning/pull/926)) - Added `progress_bar_refresh_rate=50` flag for trainer. Throttle refresh rate on notebooks ([#926](https://github.com/PyTorchLightning/pytorch-lightning/pull/926)) - Updated governance docs - Added a check to ensure that the metric used for early stopping exists before training commences ([#542](https://github.com/PyTorchLightning/pytorch-lightning/pull/542)) - Added `optimizer_idx` argument to `backward` hook ([#733](https://github.com/PyTorchLightning/pytorch-lightning/pull/733)) - Added `entity` argument to `WandbLogger` to be passed to `wandb.init` ([#783](https://github.com/PyTorchLightning/pytorch-lightning/pull/783)) - Added a tool for profiling training runs ([#782](https://github.com/PyTorchLightning/pytorch-lightning/pull/782)) - Improved flexibility for naming of TensorBoard logs, can now set `version` to a `str` to just save to that directory, and use `name=''` to prevent experiment-name directory ([#804](https://github.com/PyTorchLightning/pytorch-lightning/pull/804)) - Added option to specify `step` key when logging metrics ([#808](https://github.com/PyTorchLightning/pytorch-lightning/pull/808)) - Added `train_dataloader`, `val_dataloader` and `test_dataloader` arguments to `Trainer.fit()`, for alternative data parsing ([#759](https://github.com/PyTorchLightning/pytorch-lightning/pull/759)) - Added Tensor Processing Unit (TPU) support ([#868](https://github.com/PyTorchLightning/pytorch-lightning/pull/868)) - Added semantic segmentation example ([#751](https://github.com/PyTorchLightning/pytorch-lightning/pull/751),[#876](https://github.com/PyTorchLightning/pytorch-lightning/pull/876), [#881](https://github.com/PyTorchLightning/pytorch-lightning/pull/881)) - Split callbacks in multiple files ([#849](https://github.com/PyTorchLightning/pytorch-lightning/pull/849)) - Support for user defined callbacks ([#889](https://github.com/PyTorchLightning/pytorch-lightning/pull/889) and [#950](https://github.com/PyTorchLightning/pytorch-lightning/pull/950)) - Added support for multiple loggers to be passed to `Trainer` as an iterable (e.g. list, tuple, etc.) ([#903](https://github.com/PyTorchLightning/pytorch-lightning/pull/903)) - Added support for step-based learning rate scheduling ([#941](https://github.com/PyTorchLightning/pytorch-lightning/pull/941)) - Added support for logging `hparams` as dict ([#1029](https://github.com/PyTorchLightning/pytorch-lightning/pull/1029)) - Checkpoint and early stopping now work without val. step ([#1041](https://github.com/PyTorchLightning/pytorch-lightning/pull/1041)) - Support graceful training cleanup after Keyboard Interrupt ([#856](https://github.com/PyTorchLightning/pytorch-lightning/pull/856), [#1019](https://github.com/PyTorchLightning/pytorch-lightning/pull/1019)) - Added type hints for function arguments ([#912](https://github.com/PyTorchLightning/pytorch-lightning/pull/912), ) - Added default `argparser` for `Trainer` ([#952](https://github.com/PyTorchLightning/pytorch-lightning/pull/1023), [#1023](https://github.com/PyTorchLightning/pytorch-lightning/pull/1023)) - Added TPU gradient clipping ([#963](https://github.com/PyTorchLightning/pytorch-lightning/pull/963)) - Added max/min number of steps in `Trainer` ([#728](https://github.com/PyTorchLightning/pytorch-lightning/pull/728)) ### Changed - Improved `NeptuneLogger` by adding `close_after_fit` argument to allow logging after training([#908](https://github.com/PyTorchLightning/pytorch-lightning/pull/1084)) - Changed default TQDM to use `tqdm.auto` for prettier outputs in IPython notebooks ([#752](https://github.com/PyTorchLightning/pytorch-lightning/pull/752)) - Changed `pytorch_lightning.logging` to `pytorch_lightning.loggers` ([#767](https://github.com/PyTorchLightning/pytorch-lightning/pull/767)) - Moved the default `tqdm_dict` definition from Trainer to `LightningModule`, so it can be overridden by the user ([#749](https://github.com/PyTorchLightning/pytorch-lightning/pull/749)) - Moved functionality of `LightningModule.load_from_metrics` into `LightningModule.load_from_checkpoint` ([#995](https://github.com/PyTorchLightning/pytorch-lightning/pull/995)) - Changed Checkpoint path parameter from `filepath` to `dirpath` ([#1016](https://github.com/PyTorchLightning/pytorch-lightning/pull/1016)) - Freezed models `hparams` as `Namespace` property ([#1029](https://github.com/PyTorchLightning/pytorch-lightning/pull/1029)) - Dropped `logging` config in package init ([#1015](https://github.com/PyTorchLightning/pytorch-lightning/pull/1015)) - Renames model steps ([#1051](https://github.com/PyTorchLightning/pytorch-lightning/pull/1051)) - `training_end` >> `training_epoch_end` - `validation_end` >> `validation_epoch_end` - `test_end` >> `test_epoch_end` - Refactor dataloading, supports infinite dataloader ([#955](https://github.com/PyTorchLightning/pytorch-lightning/pull/955)) - Create single file in `TensorBoardLogger` ([#777](https://github.com/PyTorchLightning/pytorch-lightning/pull/777)) ### Deprecated - Deprecated `pytorch_lightning.logging` ([#767](https://github.com/PyTorchLightning/pytorch-lightning/pull/767)) - Deprecated `LightningModule.load_from_metrics` in favour of `LightningModule.load_from_checkpoint` ([#995](https://github.com/PyTorchLightning/pytorch-lightning/pull/995), [#1079](https://github.com/PyTorchLightning/pytorch-lightning/pull/1079)) - Deprecated `@data_loader` decorator ([#926](https://github.com/PyTorchLightning/pytorch-lightning/pull/926)) - Deprecated model steps `training_end`, `validation_end` and `test_end` ([#1051](https://github.com/PyTorchLightning/pytorch-lightning/pull/1051), [#1056](https://github.com/PyTorchLightning/pytorch-lightning/pull/1056)) ### Removed - Removed dependency on `pandas` ([#736](https://github.com/PyTorchLightning/pytorch-lightning/pull/736)) - Removed dependency on `torchvision` ([#797](https://github.com/PyTorchLightning/pytorch-lightning/pull/797)) - Removed dependency on `scikit-learn` ([#801](https://github.com/PyTorchLightning/pytorch-lightning/pull/801)) ### Fixed - Fixed a bug where early stopping `on_end_epoch` would be called inconsistently when `check_val_every_n_epoch == 0` ([#743](https://github.com/PyTorchLightning/pytorch-lightning/pull/743)) - Fixed a bug where the model checkpointer didn't write to the same directory as the logger ([#771](https://github.com/PyTorchLightning/pytorch-lightning/pull/771)) - Fixed a bug where the `TensorBoardLogger` class would create an additional empty log file during fitting ([#777](https://github.com/PyTorchLightning/pytorch-lightning/pull/777)) - Fixed a bug where `global_step` was advanced incorrectly when using `accumulate_grad_batches > 1` ([#832](https://github.com/PyTorchLightning/pytorch-lightning/pull/832)) - Fixed a bug when calling `self.logger.experiment` with multiple loggers ([#1009](https://github.com/PyTorchLightning/pytorch-lightning/pull/1009)) - Fixed a bug when calling `logger.append_tags` on a `NeptuneLogger` with a single tag ([#1009](https://github.com/PyTorchLightning/pytorch-lightning/pull/1009)) - Fixed sending back data from `.spawn` by saving and loading the trained model in/out of the process ([#1017](https://github.com/PyTorchLightning/pytorch-lightning/pull/1017) - Fixed port collision on DDP ([#1010](https://github.com/PyTorchLightning/pytorch-lightning/pull/1010)) - Fixed/tested pass overrides ([#918](https://github.com/PyTorchLightning/pytorch-lightning/pull/918)) - Fixed comet logger to log after train ([#892](https://github.com/PyTorchLightning/pytorch-lightning/pull/892)) - Remove deprecated args to learning rate step function ([#890](https://github.com/PyTorchLightning/pytorch-lightning/pull/890)) ## [0.6.0] - 2020-01-21 ### Added - Added support for resuming from a specific checkpoint via `resume_from_checkpoint` argument ([#516](https://github.com/PyTorchLightning/pytorch-lightning/pull/516)) - Added support for `ReduceLROnPlateau` scheduler ([#320](https://github.com/PyTorchLightning/pytorch-lightning/pull/320)) - Added support for Apex mode `O2` in conjunction with Data Parallel ([#493](https://github.com/PyTorchLightning/pytorch-lightning/pull/493)) - Added option (`save_top_k`) to save the top k models in the `ModelCheckpoint` class ([#128](https://github.com/PyTorchLightning/pytorch-lightning/pull/128)) - Added `on_train_start` and `on_train_end` hooks to `ModelHooks` ([#598](https://github.com/PyTorchLightning/pytorch-lightning/pull/598)) - Added `TensorBoardLogger` ([#607](https://github.com/PyTorchLightning/pytorch-lightning/pull/607)) - Added support for weight summary of model with multiple inputs ([#543](https://github.com/PyTorchLightning/pytorch-lightning/pull/543)) - Added `map_location` argument to `load_from_metrics` and `load_from_checkpoint` ([#625](https://github.com/PyTorchLightning/pytorch-lightning/pull/625)) - Added option to disable validation by setting `val_percent_check=0` ([#649](https://github.com/PyTorchLightning/pytorch-lightning/pull/649)) - Added `NeptuneLogger` class ([#648](https://github.com/PyTorchLightning/pytorch-lightning/pull/648)) - Added `WandbLogger` class ([#627](https://github.com/PyTorchLightning/pytorch-lightning/pull/627)) ### Changed - Changed the default progress bar to print to stdout instead of stderr ([#531](https://github.com/PyTorchLightning/pytorch-lightning/pull/531)) - Renamed `step_idx` to `step`, `epoch_idx` to `epoch`, `max_num_epochs` to `max_epochs` and `min_num_epochs` to `min_epochs` ([#589](https://github.com/PyTorchLightning/pytorch-lightning/pull/589)) - Renamed `total_batch_nb` to `total_batches`, `nb_val_batches` to `num_val_batches`, `nb_training_batches` to `num_training_batches`, `max_nb_epochs` to `max_epochs`, `min_nb_epochs` to `min_epochs`, `nb_test_batches` to `num_test_batches`, and `nb_val_batches` to `num_val_batches` ([#567](https://github.com/PyTorchLightning/pytorch-lightning/pull/567)) - Changed gradient logging to use parameter names instead of indexes ([#660](https://github.com/PyTorchLightning/pytorch-lightning/pull/660)) - Changed the default logger to `TensorBoardLogger` ([#609](https://github.com/PyTorchLightning/pytorch-lightning/pull/609)) - Changed the directory for tensorboard logging to be the same as model checkpointing ([#706](https://github.com/PyTorchLightning/pytorch-lightning/pull/706)) ### Deprecated - Deprecated `max_nb_epochs` and `min_nb_epochs` ([#567](https://github.com/PyTorchLightning/pytorch-lightning/pull/567)) - Deprecated the `on_sanity_check_start` hook in `ModelHooks` ([#598](https://github.com/PyTorchLightning/pytorch-lightning/pull/598)) ### Removed - Removed the `save_best_only` argument from `ModelCheckpoint`, use `save_top_k=1` instead ([#128](https://github.com/PyTorchLightning/pytorch-lightning/pull/128)) ### Fixed - Fixed a bug which ocurred when using Adagrad with cuda ([#554](https://github.com/PyTorchLightning/pytorch-lightning/pull/554)) - Fixed a bug where training would be on the GPU despite setting `gpus=0` or `gpus=[]` ([#561](https://github.com/PyTorchLightning/pytorch-lightning/pull/561)) - Fixed an error with `print_nan_gradients` when some parameters do not require gradient ([#579](https://github.com/PyTorchLightning/pytorch-lightning/pull/579)) - Fixed a bug where the progress bar would show an incorrect number of total steps during the validation sanity check when using multiple validation data loaders ([#597](https://github.com/PyTorchLightning/pytorch-lightning/pull/597)) - Fixed support for PyTorch 1.1.0 ([#552](https://github.com/PyTorchLightning/pytorch-lightning/pull/552)) - Fixed an issue with early stopping when using a `val_check_interval < 1.0` in `Trainer` ([#492](https://github.com/PyTorchLightning/pytorch-lightning/pull/492)) - Fixed bugs relating to the `CometLogger` object that would cause it to not work properly ([#481](https://github.com/PyTorchLightning/pytorch-lightning/pull/481)) - Fixed a bug that would occur when returning `-1` from `on_batch_start` following an early exit or when the batch was `None` ([#509](https://github.com/PyTorchLightning/pytorch-lightning/pull/509)) - Fixed a potential race condition with several processes trying to create checkpoint directories ([#530](https://github.com/PyTorchLightning/pytorch-lightning/pull/530)) - Fixed a bug where batch 'segments' would remain on the GPU when using `truncated_bptt > 1` ([#532](https://github.com/PyTorchLightning/pytorch-lightning/pull/532)) - Fixed a bug when using `IterableDataset` ([#547](https://github.com/PyTorchLightning/pytorch-lightning/pull/547)) - Fixed a bug where `.item` was called on non-tensor objects ([#602](https://github.com/PyTorchLightning/pytorch-lightning/pull/602)) - Fixed a bug where `Trainer.train` would crash on an uninitialized variable if the trainer was run after resuming from a checkpoint that was already at `max_epochs` ([#608](https://github.com/PyTorchLightning/pytorch-lightning/pull/608)) - Fixed a bug where early stopping would begin two epochs early ([#617](https://github.com/PyTorchLightning/pytorch-lightning/pull/617)) - Fixed a bug where `num_training_batches` and `num_test_batches` would sometimes be rounded down to zero ([#649](https://github.com/PyTorchLightning/pytorch-lightning/pull/649)) - Fixed a bug where an additional batch would be processed when manually setting `num_training_batches` ([#653](https://github.com/PyTorchLightning/pytorch-lightning/pull/653)) - Fixed a bug when batches did not have a `.copy` method ([#701](https://github.com/PyTorchLightning/pytorch-lightning/pull/701)) - Fixed a bug when using `log_gpu_memory=True` in Python 3.6 ([#715](https://github.com/PyTorchLightning/pytorch-lightning/pull/715)) - Fixed a bug where checkpoint writing could exit before completion, giving incomplete checkpoints ([#689](https://github.com/PyTorchLightning/pytorch-lightning/pull/689)) - Fixed a bug where `on_train_end` was not called when ealy stopping ([#723](https://github.com/PyTorchLightning/pytorch-lightning/pull/723)) ## [0.5.3] - 2019-11-06 ### Added - Added option to disable default logger, checkpointer, and early stopping by passing `logger=False`, `checkpoint_callback=False` and `early_stop_callback=False` respectively - Added `CometLogger` for use with Comet.ml - Added `val_check_interval` argument to `Trainer` allowing validition to be performed at every given number of batches - Added functionality to save and load hyperparameters using the standard checkpoint mechanism - Added call to `torch.cuda.empty_cache` before training starts - Added option for user to override the call t `backward` - Added support for truncated backprop through time via the `truncated_bptt_steps` argument in `Trainer` - Added option to operate on all outputs from `training_step` in DDP2 - Added a hook for modifying DDP init - Added a hook for modifying Apex ### Changed - Changed experiment version to be padded with zeros (e.g. `/dir/version_9` becomes `/dir/version_0009`) - Changed callback metrics to include any metrics given in logs or progress bar - Changed the default for `save_best_only` in `ModelCheckpoint` to `True` - Added `tng_data_loader` for backwards compatibility - Renamed `MLFlowLogger.client` to `MLFlowLogger.experiment` for consistency - Moved `global_step` increment to happen after the batch has been processed - Changed weights restore to first attempt HPC weights before restoring normally, preventing both weights being restored and running out of memory - Changed progress bar functionality to add multiple progress bars for train/val/test - Changed calls to `print` to use `logging` instead ### Deprecated - Deprecated `tng_dataloader` ### Fixed - Fixed an issue where the number of batches was off by one during training - Fixed a bug that occured when setting a ckeckpoint callback and `early_stop_callback=False` - Fixed an error when importing CometLogger - Fixed a bug where the `gpus` argument had some unexpected behaviour - Fixed a bug where the computed total number of batches was sometimes incorrect - Fixed a bug where the progress bar would sometimes not show the total number of batches in test mode - Fixed a bug when using the `log_gpu_memory='min_max'` option in `Trainer` - Fixed a bug where checkpointing would sometimes erase the current directory ## [0.5.2] - 2019-10-10 ### Added - Added `weights_summary` argument to `Trainer` to be set to `full` (full summary), `top` (just top level modules) or other - Added `tags` argument to `MLFlowLogger` ### Changed - Changed default for `amp_level` to `O1` ### Removed - Removed the `print_weights_summary` argument from `Trainer` ### Fixed - Fixed a bug where logs were not written properly - Fixed a bug where `logger.finalize` wasn't called after training is complete - Fixed callback metric errors in DDP - Fixed a bug where `TestTubeLogger` didn't log to the correct directory ## [0.5.1] - 2019-10-05 ### Added - Added the `LightningLoggerBase` class for experiment loggers - Added `MLFlowLogger` for logging with `mlflow` - Added `TestTubeLogger` for logging with `test_tube` - Added a different implementation of DDP (`distributed_backed='ddp2'`) where every node has one model using all GPUs - Added support for optimisers which require a closure (e.g. LBFGS) - Added automatic `MASTER_PORT` defualt for DDP when not set manually - Added new GPU memory logging options `'min_max'` (log only the min/max utilization) and `'all'` (log all the GPU memory) ### Changed - Changed schedulers to always be called with the current epoch - Changed `test_tube` to an optional dependency - Changed data loaders to internally use a getter instead of a python property - Disabled auto GPU loading when restoring weights to prevent out of memory errors - Changed logging, early stopping and checkpointing to occur by default ### Fixed - Fixed a bug with samplers that do not specify `set_epoch` - Fixed a bug when using the `MLFlowLogger` with unsupported data types, this will now raise a warning - Fixed a bug where gradient norms were alwasy zero using `track_grad_norm` - Fixed a bug which causes a crash when logging memory ## [0.5.0] - 2019-09-26 ### Changed - Changed `data_batch` argument to `batch` throughout - Changed `batch_i` argument to `batch_idx` throughout - Changed `tng_dataloader` method to `train_dataloader` - Changed `on_tng_metrics` method to `on_training_metrics` - Changed `gradient_clip` argument to `gradient_clip_val` - Changed `add_log_row_interval` to `row_log_interval` ### Fixed - Fixed a bug with tensorboard logging in multi-gpu setup ## [0.4.9] - 2019-09-16 ### Added - Added the flag `log_gpu_memory` to `Trainer` to deactivate logging of GPU memory utilization - Added SLURM resubmit functionality (port from test-tube) - Added optional weight_save_path to trainer to remove the need for a checkpoint_callback when using cluster training - Added option to use single gpu per node with `DistributedDataParallel` ### Changed - Changed functionality of `validation_end` and `test_end` with multiple dataloaders to be given all of the dataloaders at once rather than in seperate calls - Changed print_nan_grads to only print the parameter value and gradients when they contain NaN - Changed gpu API to take integers as well (e.g. `gpus=2` instead of `gpus=[0, 1]`) - All models now loaded on to CPU to avoid device and out of memory issues in PyTorch ### Fixed - Fixed a bug where data types that implement `.to` but not `.cuda` would not be properly moved onto the GPU - Fixed a bug where data would not be re-shuffled every epoch when using a `DistributedSampler` ## [0.4.8] - 2019-08-31 ### Added - Added `test_step` and `test_end` methods, used when `Trainer.test` is called - Added `GradientAccumulationScheduler` callback which can be used to schedule changes to the number of accumulation batches - Added option to skip the validation sanity check by setting `nb_sanity_val_steps = 0` ### Fixed - Fixed a bug when setting `nb_sanity_val_steps = 0` ## [0.4.7] - 2019-08-24 ### Changed - Changed the default `val_check_interval` to `1.0` - Changed defaults for `nb_val_batches`, `nb_tng_batches` and `nb_test_batches` to 0 ### Fixed - Fixed a bug where the full validation set as used despite setting `val_percent_check` - Fixed a bug where an `Exception` was thrown when using a data set containing a single batch - Fixed a bug where an `Exception` was thrown if no `val_dataloader` was given - Fixed a bug where tuples were not properly transfered to the GPU - Fixed a bug where data of a non standard type was not properly handled by the trainer - Fixed a bug when loading data as a tuple - Fixed a bug where `AttributeError` could be suppressed by the `Trainer` ## [0.4.6] - 2019-08-15 ### Added - Added support for data to be given as a `dict` or `list` with a single gpu - Added support for `configure_optimizers` to return a single optimizer, two list (optimizers and schedulers), or a single list ### Fixed - Fixed a bug where returning just an optimizer list (i.e. without schedulers) from `configure_optimizers` would throw an `Exception` ## [0.4.5] - 2019-08-13 ### Added - Added `optimizer_step` method that can be overridden to change the standard optimizer behaviour ## [0.4.4] - 2019-08-12 ### Added - Added supoort for multiple validation dataloaders - Added support for latest test-tube logger (optimised for `torch==1.2.0`) ### Changed - `validation_step` and `val_dataloader` are now optional - `lr_scheduler` is now activated after epoch ### Fixed - Fixed a bug where a warning would show when using `lr_scheduler` in `torch>1.1.0` - Fixed a bug where an `Exception` would be thrown if using `torch.DistributedDataParallel` without using a `DistributedSampler`, this now throws a `Warning` instead ## [0.4.3] - 2019-08-10 ### Fixed - Fixed a bug where accumulate gradients would scale the loss incorrectly ## [0.4.2] - 2019-08-08 ### Changed - Changed install requirement to `torch==1.2.0` ## [0.4.1] - 2019-08-08 ### Changed - Changed install requirement to `torch==1.1.0` ## [0.4.0] - 2019-08-08 ### Added - Added 16-bit support for a single GPU - Added support for training continuation (preserves epoch, global step etc.) ### Changed - Changed `training_step` and `validation_step`, outputs will no longer be automatically reduced ### Removed - Removed need for `Experiment` object in `Trainer` ### Fixed - Fixed issues with reducing outputs from generative models (such as images and text) ## [0.3.6] - 2019-07-25 ### Added - Added a decorator to do lazy data loading internally ### Fixed - Fixed a bug where `Experiment` object was not process safe, potentially causing logs to be overwritten ## [0.3.5] - 2019-07-25 ## [0.3.4] - 2019-07-22 ## [0.3.3] - 2019-07-22 ## [0.3.2] - 2019-07-21 ## [0.3.1] - 2019-07-21 ## [0.2.x] - 2019-07-09 ## [0.1.x] - 2019-06-DD