import os import pickle from unittest.mock import patch import pytest import tests.base.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.loggers import WandbLogger @patch('pytorch_lightning.loggers.wandb.wandb') def test_wandb_logger(wandb): """Verify that basic functionality of wandb logger works. Wandb doesn't work well with pytest so we have to mock it out here.""" tutils.reset_seed() logger = WandbLogger(anonymous=True, offline=True) logger.log_metrics({'acc': 1.0}) wandb.init().log.assert_called_once_with({'acc': 1.0}) wandb.init().log.reset_mock() logger.log_metrics({'acc': 1.0}, step=3) wandb.init().log.assert_called_once_with({'global_step': 3, 'acc': 1.0}) logger.log_hyperparams({'test': None}) wandb.init().config.update.assert_called_once_with({'test': None}) logger.watch('model', 'log', 10) wandb.watch.assert_called_once_with('model', log='log', log_freq=10) assert logger.name == wandb.init().project_name() assert logger.version == wandb.init().id @patch('pytorch_lightning.loggers.wandb.wandb') def test_wandb_pickle(wandb): """Verify that pickling trainer with wandb logger works. Wandb doesn't work well with pytest so we have to mock it out here.""" tutils.reset_seed() class Experiment: id = 'the_id' wandb.init.return_value = Experiment() logger = WandbLogger(id='the_id', offline=True) trainer_options = dict(max_epochs=1, logger=logger) trainer = Trainer(**trainer_options) pkl_bytes = pickle.dumps(trainer) trainer2 = pickle.loads(pkl_bytes) assert os.environ['WANDB_MODE'] == 'dryrun' assert trainer2.logger.__class__.__name__ == WandbLogger.__name__ _ = trainer2.logger.experiment wandb.init.assert_called() assert 'id' in wandb.init.call_args[1] assert wandb.init.call_args[1]['id'] == 'the_id' del os.environ['WANDB_MODE']