Research projects tend to test different approaches to the same dataset. This is very easy to do in Lightning with inheritance. For example, imagine we now want to train an ``AutoEncoder`` to use as a feature extractor for images. The only things that change in the ``LitAutoEncoder`` model are the init, forward, training, validation and test step. .. code-block:: python class Encoder(torch.nn.Module): ... class Decoder(torch.nn.Module): ... class AutoEncoder(torch.nn.Module): def __init__(self): super().__init__() self.encoder = Encoder() self.decoder = Decoder() def forward(self, x): return self.decoder(self.encoder(x)) class LitAutoEncoder(LightningModule): def __init__(self, auto_encoder): super().__init__() self.auto_encoder = auto_encoder self.metric = torch.nn.MSELoss() def forward(self, x): return self.auto_encoder.encoder(x) def training_step(self, batch, batch_idx): x, _ = batch x_hat = self.auto_encoder(x) loss = self.metric(x, x_hat) return loss def validation_step(self, batch, batch_idx): self._shared_eval(batch, batch_idx, "val") def test_step(self, batch, batch_idx): self._shared_eval(batch, batch_idx, "test") def _shared_eval(self, batch, batch_idx, prefix): x, _ = batch x_hat = self.auto_encoder(x) loss = self.metric(x, x_hat) self.log(f"{prefix}_loss", loss) and we can train this using the ``Trainer``: .. code-block:: python auto_encoder = AutoEncoder() lightning_module = LitAutoEncoder(auto_encoder) trainer = Trainer() trainer.fit(lightning_module, train_dataloader, val_dataloader) And remember that the forward method should define the practical use of a :class:`~pytorch_lightning.core.lightning.LightningModule`. In this case, we want to use the ``LitAutoEncoder`` to extract image representations: .. code-block:: python some_images = torch.Tensor(32, 1, 28, 28) representations = lightning_module(some_images)