import os import pytorch_lightning as pl from tests.base import EvalModelTemplate import tests.base.develop_utils as tutils import torch import pytest @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_single_gpu_test(tmpdir): tutils.set_random_master_port() model = EvalModelTemplate() trainer = pl.Trainer( default_root_dir=os.getcwd(), max_epochs=2, limit_train_batches=10, limit_val_batches=10, gpus=[0], ) trainer.fit(model) assert 'ckpt' in trainer.checkpoint_callback.best_model_path results = trainer.test() assert 'test_acc' in results results = trainer.test(model) assert 'test_acc' in results @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_dp_test(tmpdir): tutils.set_random_master_port() model = EvalModelTemplate() trainer = pl.Trainer( default_root_dir=os.getcwd(), max_epochs=2, limit_train_batches=10, limit_val_batches=10, gpus=[0, 1], distributed_backend='dp', ) trainer.fit(model) assert 'ckpt' in trainer.checkpoint_callback.best_model_path results = trainer.test() assert 'test_acc' in results results = trainer.test(model) assert 'test_acc' in results @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_ddp_spawn_test(tmpdir): tutils.set_random_master_port() model = EvalModelTemplate() trainer = pl.Trainer( default_root_dir=os.getcwd(), max_epochs=2, limit_train_batches=10, limit_val_batches=10, gpus=[0, 1], distributed_backend='ddp_spawn', ) trainer.fit(model) assert 'ckpt' in trainer.checkpoint_callback.best_model_path results = trainer.test() assert 'test_acc' in results results = trainer.test(model) assert 'test_acc' in results