# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import platform from unittest import mock import pytest import torch from pl_examples import _DALI_AVAILABLE ARGS_DEFAULT = """ --default_root_dir %(tmpdir)s \ --max_epochs 1 \ --batch_size 32 \ --limit_train_batches 2 \ --limit_val_batches 2 \ """ ARGS_GPU = ARGS_DEFAULT + """ --gpus 1 \ """ ARGS_DP = ARGS_DEFAULT + """ --gpus 2 \ --accelerator dp \ """ ARGS_DP_AMP = ARGS_DP + """ --precision 16 \ """ ARGS_DDP = ARGS_DEFAULT + """ --gpus 2 \ --accelerator ddp \ --precision 16 \ """ ARGS_DDP_AMP = ARGS_DEFAULT + """ --precision 16 \ """ @pytest.mark.parametrize('import_cli', [ 'pl_examples.basic_examples.simple_image_classifier', 'pl_examples.basic_examples.backbone_image_classifier', 'pl_examples.basic_examples.autoencoder', ]) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.parametrize('cli_args', [ARGS_DP, ARGS_DP_AMP]) def test_examples_dp(tmpdir, import_cli, cli_args): module = importlib.import_module(import_cli) # update the temp dir cli_args = cli_args % {'tmpdir': tmpdir} with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()): module.cli_main() # ToDo: fix this failing example # @pytest.mark.parametrize('import_cli', [ # 'pl_examples.basic_examples.simple_image_classifier', # 'pl_examples.basic_examples.backbone_image_classifier', # 'pl_examples.basic_examples.autoencoder', # ]) # @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") # @pytest.mark.parametrize('cli_args', [ARGS_DDP, ARGS_DDP_AMP]) # def test_examples_ddp(tmpdir, import_cli, cli_args): # # module = importlib.import_module(import_cli) # # update the temp dir # cli_args = cli_args % {'tmpdir': tmpdir} # # with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()): # module.cli_main() @pytest.mark.parametrize('import_cli', [ 'pl_examples.basic_examples.simple_image_classifier', 'pl_examples.basic_examples.backbone_image_classifier', 'pl_examples.basic_examples.autoencoder', ]) @pytest.mark.parametrize('cli_args', [ARGS_DEFAULT]) def test_examples_cpu(tmpdir, import_cli, cli_args): module = importlib.import_module(import_cli) # update the temp dir cli_args = cli_args % {'tmpdir': tmpdir} with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()): module.cli_main() @pytest.mark.skipif(not _DALI_AVAILABLE, reason="Nvidia DALI required") @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") @pytest.mark.skipif(platform.system() != 'Linux', reason='Only applies to Linux platform.') @pytest.mark.parametrize('cli_args', [ARGS_GPU]) def test_examples_mnist_dali(tmpdir, cli_args): from pl_examples.basic_examples.dali_image_classifier import cli_main # update the temp dir cli_args = cli_args % {'tmpdir': tmpdir} with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()): cli_main()