# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import multiprocessing import platform from abc import ABC, abstractmethod from typing import Union, List, Tuple, Callable, Optional from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from pytorch_lightning.accelerators.base_backend import Accelerator from pytorch_lightning.core import LightningModule from pytorch_lightning.utilities import rank_zero_warn from pytorch_lightning.utilities.data import has_iterable_dataset, has_len from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.debugging import InternalDebugger from pytorch_lightning.utilities.model_utils import is_overridden try: from apex import amp except ImportError: amp = None try: import torch_xla import torch_xla.core.xla_model as xm import torch_xla.distributed.xla_multiprocessing as xmp except ImportError: XLA_AVAILABLE = False else: XLA_AVAILABLE = True try: import horovod.torch as hvd except (ModuleNotFoundError, ImportError): HOROVOD_AVAILABLE = False else: HOROVOD_AVAILABLE = True class TrainerDataLoadingMixin(ABC): # this is just a summary on variables used in this abstract class, # the proper values/initialisation should be done in child class global_rank: int use_ddp: bool use_ddp2: bool use_horovod: bool shown_warnings: ... val_check_interval: float use_tpu: bool tpu_local_core_rank: int train_dataloader: DataLoader num_training_batches: Union[int, float] val_check_batch: ... val_dataloaders: List[DataLoader] num_val_batches: List[Union[int, float]] test_dataloaders: List[DataLoader] num_test_batches: List[Union[int, float]] limit_train_batches: Union[int, float] limit_val_batches: Union[int, float] limit_test_batches: Union[int, float] replace_sampler_ddp: bool accelerator_backend: Accelerator num_nodes: int num_processes: int distributed_backend: Optional[str] dev_debugger: InternalDebugger def _worker_check(self, dataloader: DataLoader, name: str) -> None: on_windows = platform.system() == 'Windows' # ddp_spawn + num_workers > 0 don't mix! tell the user is_dataloader = isinstance(dataloader, DataLoader) using_spawn = self.distributed_backend == "ddp_spawn" if is_dataloader and not on_windows: if dataloader.num_workers > 0 and using_spawn: rank_zero_warn('Dataloader(num_workers>0) and ddp_spawn do not mix well!' ' Your performance might suffer dramatically.' ' Please consider setting distributed_backend=ddp to use num_workers > 0' ' (this is a bottleneck of Python .spawn() and PyTorch') elif dataloader.num_workers == 0 and using_spawn: rank_zero_warn('You are using `distributed_backend=ddp_spawn` with num_workers=0.' ' For much faster performance, switch to `distributed_backend=ddp`' ' and set `num_workers>0`') elif dataloader.num_workers <= 2 and multiprocessing.cpu_count() > 2 and not using_spawn: num_cpus = multiprocessing.cpu_count() rank_zero_warn(f'The dataloader, {name}, does not have many workers which may be a bottleneck.' ' Consider increasing the value of the `num_workers` argument`' f' (try {num_cpus} which is the number of cpus on this machine)' ' in the `DataLoader` init to improve performance.') def auto_add_sampler(self, dataloader: DataLoader, train: bool) -> DataLoader: # don't do anything if it's not a dataloader is_dataloader = isinstance(dataloader, DataLoader) # don't manipulate iterable datasets is_iterable_ds = has_iterable_dataset(dataloader) if not is_dataloader or is_iterable_ds: return dataloader need_dist_sampler = (self.use_ddp or self.use_ddp2 or self.use_horovod or self.use_tpu) if self.replace_sampler_ddp and need_dist_sampler: if not isinstance(dataloader.sampler, (SequentialSampler, RandomSampler)): raise MisconfigurationException( 'You seem to have configured a sampler in your DataLoader. This will be replaced ' ' by `DistributedSampler` since `replace_sampler_ddp` is True and you are using' ' distributed training. Either remove the sampler from your DataLoader or set' ' `replace_sampler_ddp`=False if you want to use your custom sampler.') # replace with distributed sampler sampler = self._get_distributed_sampler(dataloader, train) dataloader = self.replace_sampler(dataloader, sampler) return dataloader def replace_sampler(self, dataloader, sampler): skip_keys = ['sampler', 'batch_sampler', 'dataset_kind'] dl_args = { k: v for k, v in dataloader.__dict__.items() if not k.startswith('_') and k not in skip_keys } dl_args['sampler'] = sampler dataloader = type(dataloader)(**dl_args) return dataloader def _get_distributed_sampler(self, dataloader, train): if self.use_tpu: kwargs = dict(num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()) elif self.use_horovod: kwargs = dict(num_replicas=hvd.size(), rank=hvd.rank()) else: world_size = { "ddp": self.num_nodes * self.num_processes, "ddp_spawn": self.num_nodes * self.num_processes, "ddp2": self.num_nodes, "ddp_cpu": self.num_processes * self.num_nodes } assert self.distributed_backend is not None kwargs = dict(num_replicas=world_size[self.distributed_backend], rank=self.global_rank) kwargs['shuffle'] = train and not self.overfit_batches sampler = DistributedSampler(dataloader.dataset, **kwargs) return sampler def reset_train_dataloader(self, model: LightningModule) -> None: """Resets the train dataloader and initialises required variables (number of batches, when to validate, etc.). Args: model: The current `LightningModule` """ self.train_dataloader = self.request_dataloader(model.train_dataloader) if (self.overfit_batches > 0): if hasattr(self.train_dataloader, 'sampler') and isinstance(self.train_dataloader.sampler, RandomSampler): rank_zero_warn('You requested to overfit but enabled training dataloader shuffling.' ' We are turning it off for you.') self.train_dataloader = self.replace_sampler( self.train_dataloader, SequentialSampler(self.train_dataloader.dataset)) # debugging self.dev_debugger.track_load_dataloader_call('train_dataloader', dataloaders=[self.train_dataloader]) self.num_training_batches = 0 # automatically add samplers self.train_dataloader = self.auto_add_sampler(self.train_dataloader, train=True) self.num_training_batches = len(self.train_dataloader) if has_len(self.train_dataloader) else float('inf') self._worker_check(self.train_dataloader, 'train dataloader') if isinstance(self.limit_train_batches, int) or self.limit_train_batches == 0.0: self.num_training_batches = min(self.num_training_batches, int(self.limit_train_batches)) elif self.num_training_batches != float('inf'): self.num_training_batches = int(self.num_training_batches * self.limit_train_batches) elif self.limit_train_batches != 1.0: raise MisconfigurationException( 'When using an IterableDataset for `limit_train_batches`,' ' `Trainer(limit_train_batches)` must be `0.0`, `1.0` or an int. An int k specifies' ' `num_training_batches` to use.') # determine when to check validation # if int passed in, val checks that often # otherwise, it checks in [0, 1.0] % range of a training epoch if isinstance(self.val_check_interval, int): self.val_check_batch = self.val_check_interval if self.val_check_batch > self.num_training_batches: raise ValueError( f'`val_check_interval` ({self.val_check_interval}) must be less than or equal ' f'to the number of the training batches ({self.num_training_batches}). ' 'If you want to disable validation set `limit_val_batches` to 0.0 instead.') else: if not has_len(self.train_dataloader): if self.val_check_interval == 1.0: self.val_check_batch = float('inf') else: raise MisconfigurationException( 'When using an IterableDataset for `train_dataloader`,' ' `Trainer(val_check_interval)` must be `1.0` or an int. An int k specifies' ' checking validation every k training batches.') else: self.val_check_batch = int(self.num_training_batches * self.val_check_interval) self.val_check_batch = max(1, self.val_check_batch) def _reset_eval_dataloader( self, model: LightningModule, mode: str ) -> Tuple[List[Union[int, float]], List[DataLoader]]: """Generic method to reset a dataloader for evaluation. Args: model: The current `LightningModule` mode: Either `'val'` or `'test'` Returns: Tuple (num_batches, dataloaders) """ # use the training loader as val and test when overfitting loader_name = f'{mode}_dataloader' if self.overfit_batches > 0: loader_name = 'train_dataloader' # load loaders dataloaders = self.request_dataloader(getattr(model, loader_name)) if not isinstance(dataloaders, list): dataloaders = [dataloaders] self.dev_debugger.track_load_dataloader_call(loader_name, dataloaders=dataloaders) for loader_i in range(len(dataloaders)): loader = dataloaders[loader_i] # shuffling in val and test set is bad practice if mode in ('val', 'test') and hasattr(loader, 'sampler') and isinstance(loader.sampler, RandomSampler): # when overfitting, the dataloader should not have sampler if self.overfit_batches > 0: rank_zero_warn('You requested to overfit but enabled test/val dataloader shuffling.' ' We are turning it off for you.') dataloaders[loader_i] = self.replace_sampler(loader, SequentialSampler(loader.dataset)) else: rank_zero_warn(f'Your {mode}_dataloader has `shuffle=True`, it is best practice to turn' ' this off for validation and test dataloaders.') if any([dl is None for dl in dataloaders]): rank_zero_warn("One of given dataloaders is None and it will be skipped.") # add samplers dataloaders = [self.auto_add_sampler(dl, train=False) for dl in dataloaders if dl is not None] loader_num_batches = [] # determine number of batches # datasets could be none, 1 or 2+ if len(dataloaders) != 0: for i, dataloader in enumerate(dataloaders): num_batches = len(dataloader) if has_len(dataloader) else float('inf') self._worker_check(dataloader, f'{mode} dataloader {i}') # percent or num_steps limit_eval_batches = getattr(self, f'limit_{mode}_batches') # limit num batches either as a percent or num steps if isinstance(limit_eval_batches, int) or limit_eval_batches == 0.0: num_batches = min(num_batches, int(limit_eval_batches)) elif num_batches != float('inf'): num_batches = int(num_batches * limit_eval_batches) elif limit_eval_batches != 1.0: raise MisconfigurationException( 'When using an IterableDataset for `limit_{mode}_batches`,' f' `Trainer(limit_{mode}_batches)` must be `0.0`, `1.0` or an int. An int k specifies' f' `num_{mode}_batches` to use.') if num_batches == 0 and limit_eval_batches > 0.0 and isinstance(limit_eval_batches, float): min_pct = 1.0 / len(dataloader) raise MisconfigurationException( f'you requested to check {limit_eval_batches} of the {mode} dataloader but' f' {limit_eval_batches}*{num_batches} < 1. Please increase the limit_{mode}_batches.' f' Try at least limit_{mode}_batches={min_pct}' ) loader_num_batches.append(num_batches) return loader_num_batches, dataloaders def reset_val_dataloader(self, model: LightningModule) -> None: """Resets the validation dataloader and determines the number of batches. Args: model: The current `LightningModule` """ has_loader = is_overridden('val_dataloader', model) has_step = is_overridden('validation_step', model) if has_loader and has_step: self.num_val_batches, self.val_dataloaders = self._reset_eval_dataloader(model, 'val') def reset_test_dataloader(self, model) -> None: """Resets the validation dataloader and determines the number of batches. Args: model: The current `LightningModule` """ has_loader = is_overridden('test_dataloader', model) has_step = is_overridden('test_step', model) if has_loader and has_step: self.num_test_batches, self.test_dataloaders =\ self._reset_eval_dataloader(model, 'test') def request_dataloader(self, dataloader_fx: Callable) -> DataLoader: """Handles downloading data in the GPU or TPU case. Args: dataloader_fx: The bound dataloader getter Returns: The dataloader """ dataloader = dataloader_fx() if self.accelerator_backend is not None: self.accelerator_backend.barrier('get_dataloaders') return dataloader