# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import pytest from lightning.fabric.utilities.seed import seed_everything from lightning.pytorch import Callback, Trainer from lightning.pytorch.callbacks import OnExceptionCheckpoint from lightning.pytorch.demos.boring_classes import BoringModel, RandomDataset from lightning.pytorch.utilities.exceptions import SIGTERMException from torch.utils.data.dataloader import DataLoader from tests_pytorch.helpers.runif import RunIf class TestAutoRestartModelUnderSignal(BoringModel): def __init__(self, should_signal: bool, failure_on_step: bool, failure_on_training: bool, on_last_batch: bool): super().__init__() self.should_signal = should_signal self.failure_on_step = failure_on_step self.failure_on_training = failure_on_training self.on_last_batch = on_last_batch self.seen_train_batches = [] def _signal(self): if self.should_signal: # simulate `os.kill(os.getpid(), signal.SIGTERM)` self.trainer._signal_connector.received_sigterm = True def training_step(self, batch, batch_idx): self.seen_train_batches.append(batch) should_signal = self.trainer.fit_loop.epoch_loop._is_training_done if self.on_last_batch else batch_idx == 2 if self.failure_on_step and self.failure_on_training and should_signal: self._signal() return super().training_step(batch, batch_idx) def validation_step(self, batch, batch_idx): should_signal = ( self.trainer.fit_loop.epoch_loop.val_loop.batch_progress.is_last_batch if self.on_last_batch else batch_idx == 2 ) if self.failure_on_step and not self.failure_on_training and should_signal: self._signal() return super().validation_step(batch, batch_idx) def on_train_epoch_end(self): if not self.failure_on_step and self.failure_on_training: self._signal() def on_validation_epoch_end(self): if not self.failure_on_step and not self.failure_on_training: self._signal() def train_dataloader(self): return DataLoader(RandomDataset(32, 4)) def val_dataloader(self): return DataLoader(RandomDataset(32, 4)) def _fit_model( tmpdir, should_signal, val_check_interval, failure_on_step, failure_on_training, on_last_batch, status=None ): seed_everything(42) model = TestAutoRestartModelUnderSignal(should_signal, failure_on_step, failure_on_training, on_last_batch) class MyTestCallback(Callback): raising_function = None def on_exception(self, trainer, pl_module, exception): if isinstance(exception, SIGTERMException): caller = inspect.trace()[-1] class_name = caller[0].f_locals["self"].__class__.__name__ self.raising_method = f"{class_name}:{caller.function}" test_callback = MyTestCallback() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=4, limit_val_batches=4, val_check_interval=val_check_interval, num_sanity_val_steps=0, callbacks=[test_callback, OnExceptionCheckpoint(tmpdir)], ) if should_signal: with pytest.raises(SIGTERMException): trainer.fit(model) assert test_callback.raising_method == status else: trainer.fit(model) assert trainer.received_sigterm == should_signal return model @pytest.mark.parametrize("on_last_batch", [False, True]) @pytest.mark.parametrize("val_check_interval", [0.5, 1.0]) @pytest.mark.parametrize("failure_on_training", [False, True]) @pytest.mark.parametrize("failure_on_step", [False, True]) @RunIf(skip_windows=True) def test_auto_restart_under_signal(on_last_batch, val_check_interval, failure_on_training, failure_on_step, tmpdir): if failure_on_step: if on_last_batch: if failure_on_training: # Breaking on first validation batch. # This is done to capture the random state of the validation dataloader. status = "_EvaluationLoop:_evaluation_step" else: # when breaking on last batch of validation, we should exist on `run_end` val_check_interval == 1.0 status = "_FitLoop:on_advance_end" if val_check_interval == 1.0 else "_TrainingEpochLoop:on_advance_end" else: status = "_TrainingEpochLoop:on_advance_end" if failure_on_training else "_EvaluationLoop:_evaluation_step" else: if val_check_interval == 1.0: status = "_FitLoop:on_advance_end" else: # `on_train_epoch_end` happens after `on_validation_epoch_end` since Lightning v1.4 status = "_FitLoop:on_advance_end" if failure_on_training else "_TrainingEpochLoop:on_advance_end" _fit_model(tmpdir, True, val_check_interval, failure_on_step, failure_on_training, on_last_batch, status=status)