# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager from typing import Any, Callable, Generator import torch from torch.optim import LBFGS, Optimizer import pytorch_lightning as pl from pytorch_lightning.plugins.precision.mixed import MixedPrecisionPlugin from pytorch_lightning.utilities import _NATIVE_AMP_AVAILABLE, AMPType from pytorch_lightning.utilities.exceptions import MisconfigurationException class NativeMixedPrecisionPlugin(MixedPrecisionPlugin): """ Plugin for native mixed precision training with :mod:`torch.cuda.amp`.""" def __init__(self) -> None: super().__init__() if not _NATIVE_AMP_AVAILABLE: raise MisconfigurationException( "You have asked for native AMP but your PyTorch version does not support it." " Consider upgrading with `pip install torch>=1.6`." ) self.backend = AMPType.NATIVE self.scaler = torch.cuda.amp.GradScaler() def backward( self, model: 'pl.LightningModule', closure_loss: torch.Tensor, optimizer: Optimizer, opt_idx: int, should_accumulate: bool, *args: Any, **kwargs: Any, ) -> torch.Tensor: """performs the actual backpropagation Args: model: the model to be optimized closure_loss: the loss value obtained from the closure optimizer: the optimizer to perform the step lateron opt_idx: the optimizer's index should_accumulate: whether to accumulate gradients or not """ closure_loss = self.scaler.scale(closure_loss) closure_loss = super().backward(model, closure_loss, optimizer, opt_idx, should_accumulate, *args, **kwargs) # unscale gradient to allow analyze within `on_after_backward` if not should_accumulate and model.automatic_optimization: self.scaler.unscale_(optimizer) return closure_loss def pre_optimizer_step( self, pl_module: 'pl.LightningModule', optimizer: Optimizer, optimizer_idx: int, lambda_closure: Callable, **kwargs: Any, ) -> bool: """always called before the optimizer step. Checks that the optimizer is not LBFGS, as this one is not supported by native amp """ if isinstance(optimizer, LBFGS): raise MisconfigurationException( f"native PyTorch amp and lbfgs are not compatible (optimizer {optimizer_idx})." " To request, please file a Github issue in PyTorch and tag @mcarilli" ) lambda_closure() if not pl_module.automatic_optimization: self.scaler.unscale_(optimizer) pl_module.trainer.call_hook("on_after_backward") return False def post_optimizer_step(self, optimizer: Optimizer, optimizer_idx: int) -> None: """Updates the GradScaler""" self.scaler.step(optimizer) self.scaler.update() @contextmanager def train_step_context(self) -> Generator[None, None, None]: """Enable autocast context""" with torch.cuda.amp.autocast(): yield @contextmanager def val_step_context(self) -> Generator[None, None, None]: """Enable autocast context""" with torch.cuda.amp.autocast(): yield @contextmanager def test_step_context(self) -> Generator[None, None, None]: """Enable autocast context""" with torch.cuda.amp.autocast(): yield @contextmanager def predict_step_context(self) -> Generator[None, None, None]: """Enable autocast context""" with torch.cuda.amp.autocast(): yield