# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Optional, Union import torch import pytorch_lightning as pl from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO from pytorch_lightning.plugins.precision import PrecisionPlugin from pytorch_lightning.strategies.training_type_plugin import Strategy from pytorch_lightning.utilities import _XLA_AVAILABLE class SingleDeviceStrategy(Strategy): """Strategy that handles communication on a single device.""" def __init__( self, device: torch.device, accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None, checkpoint_io: Optional[CheckpointIO] = None, precision_plugin: Optional[PrecisionPlugin] = None, ): super().__init__(accelerator=accelerator, checkpoint_io=checkpoint_io, precision_plugin=precision_plugin) self.device: torch.device = device self.global_rank = 0 self.local_rank = 0 self.world_size = 1 @property def on_tpu(self) -> bool: return self.root_device.type == "xla" and _XLA_AVAILABLE @property def on_gpu(self) -> bool: return self.root_device.type == "cuda" and torch.cuda.is_available() def reduce(self, tensor: Union[Any, torch.Tensor], *args: Any, **kwargs: Any) -> Union[Any, torch.Tensor]: """Reduces a tensor from several distributed processes to one aggregated tensor. As this plugin only operates with a single device, the reduction is simply the identity. Args: tensor: the tensor to sync and reduce *args: ignored **kwargs: ignored Return: the unmodified input as reduction is not needed for single process operation """ return tensor def all_gather(self, tensor: torch.Tensor, group: Optional[Any] = None, sync_grads: bool = False) -> torch.Tensor: """Perform a all_gather on all processes.""" return tensor @property def root_device(self) -> torch.device: return self.device def model_to_device(self) -> None: self.model.to(self.root_device) def setup(self, trainer: "pl.Trainer") -> None: self.model_to_device() super().setup(trainer) @property def is_global_zero(self) -> bool: return True def barrier(self, *args, **kwargs) -> None: pass def broadcast(self, obj: object, src: int = 0) -> object: return obj def teardown(self) -> None: super().teardown() if self.on_gpu: # GPU teardown self.lightning_module.cpu() # clean up memory torch.cuda.empty_cache()